Answer:
see explanation
Step-by-step explanation:
Given that y varies inversely as x then the equation relating them is
y = ← k is the constant of variation
To find k use the condition that x = 9 when y = 15
15 = ( multiply both sides by 9 )
k = 135
y = ← equation of variation
The absolute value inequality can be decomposed into two simpler ones.
x < 0
x > -8
<h3>
</h3><h3>
Which two inequalities can be used?</h3>
Here we start with the inequality:
3|x + 4| - 5 < 7
First we need to isolate the absolute value part:
3|x + 4| < 7 + 5
|x + 4| < (7 + 5)/3
|x + 4| < 12/3
|x + 4| < 4
The absolute value inequality can now be decomposed into two simpler ones:
x + 4 < 4
x + 4 > - 4
Solving both of these we get:
x < 4 - 4
x > -4 - 4
x < 0
x > -8
These are the two inequalities.
Learn more about inequalities:
brainly.com/question/24372553
#SPJ1
the correct answer is, B.
41
Answer:
First, a absolute value function is something like:
y = f(x) = IxI
remember how this work:
if x ≥ 0, IxI = x
if x ≤ 0, IxI = -x
Notice that I0I = 0.
And the range of this function is all the possible values of y.
For example for the parent function IxI, the range will be all the positive reals and the zero.
First, if A is the value of the vertex of the absolute function, then we know that A is the maximum or the minimum value of the function.
Now, if the arms of the graph open up, then we know that A is the minimum of the function, and the range will be:
y ≥ A
Or all the real values equal to or larger than A.
if the arms of the graph open downwards, then A is the maximum of the function, and we have that the range is:
y ≤ A
Or "All the real values equal to or smaller than A"