Answer:
P(cell has at least one of the positive nickel-charged options) = 0.83.
P(a cell is not composed of a positive nickel charge greater than +3) = 0.85.
Step-by-step explanation:
It is given that the Nickel Charge Proportions found in the battery are:
0 ==> 0.17
.
+2 ==> 0.35
.
+3 ==> 0.33
.
+4 ==> 0.15.
The numbers associated to the charge are actually the probabilities of the charges because nickel is an element that has multiple oxidation states that is usually found in the above mentioned states.
a) P(cell has at least one of the positive nickel-charged options) = P(a cell has +2 nickel-charged options) + P(a cell has +3 nickel-charged options) + P(a cell has +4 nickel-charged options) = 0.35 + 0.33 + 0.15 = 0.83.
Or:
P(a cell has at least one of the positive nickel-charged options) = 1 - P(a cell has 0 nickel-charged options) = 1 - 0.17 = 0.83.
b) P(a cell is not composed of a positive nickel charge greater than +3) = 1 - P(a cell is composed of a positive nickel charge greater than +3)
= 1 - P(a cell has +4 nickel-charged options) '.' because +4 is only positive nickel charge greater than +3
= 1 - 0.15
= 0.85
To summarize:
P(cell has at least one of the positive nickel-charged options) = 0.83!!!
P(a cell is not composed of a positive nickel charge greater than +3) = 0.85!!!
To find her speed, divide the total distance by the total time:
12.5 miles / 5 hours = 2.5 miles per hour.
1) f/3 + 22 = 17
2) f/3 + 22 - 22 = 17 - 22
= f/3 = -5
3) 3 • f/3 = 3(-5)
= f = 3(-5)
= f = -15
Your answer would be f = -15
:)
Answer:
Yes Jeff is the correct answer
Step-by-step explanation: