Answer:
y=120
Step-by-step explanation:
Y varies directly as x is written as

introducing a constant
y=kx
<em>from</em><em> </em><em>the</em><em> </em><em>ques</em><em>tion</em><em>,</em><em> </em><em>whe</em><em>n</em><em> </em><em>y</em><em>=</em><em>4</em><em>8</em><em>,</em><em> </em><em> </em><em>x</em><em>=</em><em>6</em>
<em>sub</em><em>stitute</em><em> </em><em>it</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>form</em><em>ula</em>
<em>4</em><em>8</em><em>=</em><em>6</em><em>k</em>
<em>making</em><em> </em><em>k</em><em> </em><em>the</em><em> subject</em><em> </em><em>by </em><em>divi</em><em>ding</em><em> </em><em>thr</em><em>ough</em><em> </em><em>by</em><em> </em><em>6</em>
<em>
</em>
k=48/6
k=8
<em>put</em><em> </em><em>the</em><em> </em><em>va</em><em>lue</em><em> </em><em>of</em><em> </em><em>k</em><em> </em><em>in</em><em> </em><em>the </em><em>expression</em><em> </em><em>y</em><em>=</em><em>kx</em>
<em>y</em><em>=</em><em>8</em><em>x</em>
from the question,the value of y when x=15 is given by
y=8×15
y=120.
Answer: im not shore how to answer but here is to answers: 980 ft when multiplied and 31ft when added
Step-by-step explanation:
plz mark brainlyest
Answer:
C. 27
Step-by-step explanation:
well we can use the pythagorean theorem for this and disregard the 11. so we have the hypotenuse and one side so therefore a^2+b^2=c^2 and if we plug in the numbers it would look like this
16.5^2+x^2=29^2
272.25+x^2=841
x^2=568.75
and from multiple choice we can infer that the answer is obviously bigger than 16.5 because in the picture x is a longer side but it is smaller than 29 and the only answer in between those two numbers given would be C. 27
Answer:
and 
Step-by-step explanation:
We have the next set of functions:



We want to know M(T) then:
but we know that
:
and we know that 

Finally using the value of 22º we have

You must “reverse” the inequality sign to make the statement true: When you multiply by a negative number, “reverse” the inequality sign. Whenever you multiply or divide both sides of an inequality by a negative number, the inequality sign must be reversed in order to keep a true statement.