Answer:
Ano pong sa Sagutin diyan
Step-by-step explanation:
hindi ko op maintiddihan sorry po
1) Finding the zeros of this function f(x) =x² +3x -18
f(x) = x²+3x-18 <em>Factoring this equation, and rewriting it</em>
<em />
<em>Which two numbers whose sum is equal to 3 and their product is equal to 18?</em>
<em>6 -3 = 3 and 6 *-3 = -18</em>
<em />
<em>So we can rewrite as (x +6) (x-3)</em>
<em> </em>
(x+6)(x-3)=0 <em>Applying the Zero product rule, to find the roots</em>
x+6=0,
x=-6
x-3=0,
x=3
S={3,-6}
2) Setting a table, plugging in the values of x into the factored form: (x-6)(x-3)
x | y |
1 | -14 (1 +6)(1-3) =-14
2 | -8 (2 +6)(2-3) =-8
3 | 0
4 | 10
-5 | -8
-6 | 0
3) Plotting the function:
Answer:
number 3 is incorrect the rest are correct
let's multiply both sides by the LCD of all fractions, in this case is 4, just to do away with the denominators for a few seconds
![\bf f(x) = \cfrac{1}{4}x^2+\cfrac{1}{2}x-\cfrac{35}{4}\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{4}}{4[f(x)]=4\left( \cfrac{1}{4}x^2+\cfrac{1}{2}x-\cfrac{35}{4} \right)} \\\\\\ 4f(x) = x^2+2x-35\implies 4f(x) = (x+7)(x-5) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill f(x) = \cfrac{1}{4}(x+7)(x-5)~\hfill](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%20%3D%20%5Ccfrac%7B1%7D%7B4%7Dx%5E2%2B%5Ccfrac%7B1%7D%7B2%7Dx-%5Ccfrac%7B35%7D%7B4%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B4%7D%7D%7B4%5Bf%28x%29%5D%3D4%5Cleft%28%20%5Ccfrac%7B1%7D%7B4%7Dx%5E2%2B%5Ccfrac%7B1%7D%7B2%7Dx-%5Ccfrac%7B35%7D%7B4%7D%20%5Cright%29%7D%20%5C%5C%5C%5C%5C%5C%204f%28x%29%20%3D%20x%5E2%2B2x-35%5Cimplies%204f%28x%29%20%3D%20%28x%2B7%29%28x-5%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20f%28x%29%20%3D%20%5Ccfrac%7B1%7D%7B4%7D%28x%2B7%29%28x-5%29~%5Chfill)