divide tomato genome and human genome and you'll get
= 0.3
standard form is
3 × 10-¹
Answer:
0.1019
Step-by-step explanation:
Probability, p=12%=0.12
Sample size, n=130 students
Those writing with left=14 students
Using the formula for binomial distribution
P(X≤x)=![\left[\begin{array}{}n\\x\end{array}\right]p^{x}(1-p)^{n-x}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7B%7Dn%5C%5Cx%5Cend%7Barray%7D%5Cright%5Dp%5E%7Bx%7D%281-p%29%5E%7Bn-x%7D)
Substituting 0.12 for p, 130 for n, 14 for x we obtain
P(X≤x)=![\left[\begin{array}{}130\\14\end{array}\right]0.12^{14}(1-0.12)^{130-14}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7B%7D130%5C%5C14%5Cend%7Barray%7D%5Cright%5D0.12%5E%7B14%7D%281-0.12%29%5E%7B130-14%7D)
P(X≤x)=
P(X≤x)=0.1019
Answer:
−3 < x ≤ 1
Step-by-step explanation:
The domain of a function is the set of x-values.
In this graph, the open circle at (-3, -4) means the segment goes back up to this point but this point is not part of the segment itself.
The closed circle at (1, 2) means this is the endpoint and part of the segment.
This means the x-values range from almost -3 up to and including 1; this gives us the inequality
−3 < x ≤ 1
Absolute value only removes the negative signs. Just multiply the numerator and the denominator