1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
9

A seagull is flying horizontally 8.00 m above the ground at 6.00 m/s.

Physics
1 answer:
zzz [600]3 years ago
3 0
A) 6m cause it is at its highest speed
B)9.81*cos(36.87)+6*sin36.87)
C)6m/s
You might be interested in
An air-plane has an effective wing surface area of 17.0 m² that is generating the lift force. In level flight the air speed over
Lady bird [3.3K]

Answer:

Explanation:

Given that,

Surface area A= 17m²

The speed at the top v" = 66m/s

Speed beneath is v' =40 m/s

The density of air p =1.29kg/m³

Weight of plane?

Assuming that,

the height difference between the top and bottom of the wind is negligible and we can ignore any change in gravitational potential energy of the fluid.

Using Bernoulli equation

P'+ ½pv'²+ pgh' = P'' + ½pv''² + pgh''

Where

P' is pressure at the bottom in N/m²

P" is pressure at the top in N/m²

v' is velocity at the bottom in m/s

v" is velocity at the top in m/s

Then, Bernoulli equation becomes

P'+ ½pv'² = P'' + ½pv''²

Rearranging

P' — P'' = ½pv"² —½pv'²

P'—P" = ½p ( v"² —v'²)

P'—P" = ½ × 1.29 × (66²-40²)

P'—P" = 1777.62 N/m²

Lift force can be found from

Pressure = force/Area

Force = ∆P ×A

Force = (P' —P")×A

Since we already have (P'—P")

Then, F=W = (P' —P")×A

W = 1777.62 × 17

W = 30,219.54 N

The weight of the plane is 30.22 KN

5 0
3 years ago
Read 2 more answers
If you were trying to describe the difference between power and work you could say:
avanturin [10]
Power is the energy transferred or "WORK DONE" in one second
6 0
2 years ago
Read 2 more answers
Alkali metals _____.
Lyrx [107]
I think the answer is C
7 0
2 years ago
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
A thin spherical spherical shell of radius R which carried a uniform surface charge density σ. Write an expression for the volum
ozzi

Answer:

Explanation:

From the given information:

We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then

The volume charge distribution relates to the radial direction at r = R

∴

\rho (r) \  \alpha  \  \delta (r -R)

\rho (r) = k \  \delta (r -R) \ \  at \ \  (r = R)

\rho (r) = 0\ \ since \ r< R  \ \ or  \ \ r>R---- (1)

To find the constant k, we  examine the total charge Q which is:

Q = \int \rho (r) \ dV = \int \sigma \times dA

Q = \int \rho (r) \ dV = \sigma \times4 \pi R^2

∴

\int ^{2 \pi}_{0} \int ^{\pi}_{0} \int ^{R}_{0} \rho (r) r^2sin \theta  \ dr \ d\theta \ d\phi = \sigma \times 4 \pi R^2

\int^{2 \pi}_{0} d \phi* \int ^{\pi}_{0} \ sin \theta d \theta * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

(2 \pi)(2) * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

Thus;

k * 4 \pi  \int ^{R}_{0}  \delta (r -R) * r^2dr = \sigma \times  R^2

k * \int ^{R}_{0}  \delta (r -R)  r^2dr = \sigma \times  R^2

k * R^2= \sigma \times  R^2

k  =   R^2 --- (2)

Hence, from equation (1), if k = \sigma

\mathbf{\rho (r) = \delta* \delta (r -R)  \ \  at   \ \  (r=R)}

\mathbf{\rho (r) =0 \ \  at   \ \  rR}

To verify the units:

\mathbf{\rho (r) =\sigma \ *  \ \delta (r-R)}

↓         ↓            ↓

c/m³    c/m³  ×   1/m            

Thus, the units are verified.

The integrated charge Q

Q = \int \rho (r) \ dV \\ \\ Q = \int ^{2 \ \pi}_{0} \int ^{\pi}_{0} \int ^R_0 \rho (r) \ \ r^2 \ \  sin \theta  \ dr \ d\theta \  d \phi  \\ \\  Q = \int ^{2 \pi}_{0} \  d \phi  \int ^{\pi}_{0} \ sin \theta  \int ^R_{0} \rho (r) r^2 \ dr

Q = (2 \pi) (2) \int ^R_0 \sigma * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  \int ^R_0  * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  *R^2    since  ( \int ^{xo}_{0} (x -x_o) f(x) \ dx = f(x_o) )

\mathbf{Q = 4 \pi R^2  \sigma  }

6 0
3 years ago
Other questions:
  • What does the prefix kilo mean?
    9·2 answers
  • Our atmosphere constantly being heated by the sun is an example of
    5·1 answer
  • Synonym of an applied force
    10·1 answer
  • 30 POINTS!!!Need help!!! A charge of 8.5 × 10–6 C is in an electric field that has a strength of 3.2 × 105 N/C. What is the elec
    15·2 answers
  • PLS HELP MEEEE (NO LINKS PLEASE)
    11·2 answers
  • When the program reads the 0 and 1's it is called _______________________.
    7·1 answer
  • Name the charged particles that can be transferred between certain materials when they
    10·1 answer
  • Confirm that the force field F is conservative in some open connected region containing the points P and Q, and then find the wo
    6·1 answer
  • A particle begins to move with uniform acceleration. If in the first second it travels 3m
    12·1 answer
  • A bucket of water with weight of 50N is pulled up using a rope. The bucket is moving at
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!