<em>Acceleration (a) = 5.1 m/s</em>²
<em>Initial speed (u) = 16 km/h </em>⇒
![\frac{16*1000}{3600}](https://tex.z-dn.net/?f=%20%5Cfrac%7B16%2A1000%7D%7B3600%7D%20)
<em>m/s </em>≈ <em>4.5m/s</em>
<em>
</em><em>Final speed (v) =118 km/h </em>⇒
![\frac{118*1000}{3600}](https://tex.z-dn.net/?f=%20%5Cfrac%7B118%2A1000%7D%7B3600%7D%20)
<em>m/s</em> ≈ <em>32.8m/s</em>
<em>
</em>Distance(S) travel in that particular instant is carried out by 'Third equation of motion' i.e., v² = u² + 2aS
<em>So, When all quantities are in S.I. unit then,
</em>putting the values in the equation of motion,
<em /><em>As we have to carry out the distance covered,
</em><em>2</em>·<em>a</em>·<em>S = v</em>² <em>- u</em>²
<em>S = </em>
![\frac{ v^{2} - u^{2} }{2a}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20v%5E%7B2%7D%20-%20u%5E%7B2%7D%20%7D%7B2a%7D%20%20)
Putting values in derived equation,
⇒ <em>S = </em>
![\frac{ (32.8)^{2} - (4.5)^{2} }{2*(5.1)}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%2832.8%29%5E%7B2%7D%20-%20%284.5%29%5E%7B2%7D%20%7D%7B2%2A%285.1%29%7D%20)
⇒ <em>S = </em>
![\frac{ 1075.84 - 20.25}{10.2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%201075.84%20-%2020.25%7D%7B10.2%7D%20)
⇒ <em>S = </em>
![\frac{1055.59}{10.2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1055.59%7D%7B10.2%7D%20)
⇒ <em>S </em>≈ <em>103.489</em> <em>m
</em>
<em>
The total distance covered in that given condition is approx. 103.289 m.</em>
Answer:
150°
Step-by-step explanation:
You are given the formula for the sum of the interior angles where n is the number of sides.
Substitute 12 in:
(12-2)×180
=10×180
=1800
To find an individual angle, divide the sum by n.
1800÷12=150
The square has area 8*8=64, the rectangle has area 7*4=28, and the triangle has area 7*6/2=21. Their sum is 64+28+21=113.
S.A = (2×area of base) + area of lateral faces
Area of lateral faces = area of base × height
Area of lateral faces = 19×4×8=608
S.A = (2×19×4)+608
=760