Given:
Triangle LJK.
LJ = 89 in, LK = 28 in and m∠L = 42°
To find:
The length of missing side JK.
Solution:
LJ = k = 89
LK = j = 28
JK = l = ?
Using law of cosine:

Substitute the given values.





Taking square root on both sides.

The length of the missing side is 70.7 in.
Answer:

Step-by-step explanation:
To calculate the angles of the given triangle, we can use the law of cosines:

Then, given the sides a=2, b=9, and c=8.

For B:

Answer:
the answer is x=185
Step-by-step explanation:
x+240=425
-240 -240
x= 185
Answer:
The answer should be 69°
Step-by-step explanation:
Each line is being cut by a transversal, that means that the degree on the other side of it, added with the given degree will add up to 180°
1. On the right, you need to find the interior angle where 160° is outside so you subtract 180° from 160° to find the angle inside. That gives you 20°
2. On the top left you have 131° so 180°-131°=49°
Next you add the angles you have and then subtract it from 180 to get the interior angle with n° outside.
3. 20°+49°=69°
4. 180°-69°=111°
Then you do the same thing as the beginning which would be n°+111°=180°
5. n°+111°=180°, that means n=69°
Hopefully that clears it up for you :)
Answer:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.
Step-by-step explanation:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.