Answer:
When y = |x + h|, the graph is shifted (or translated) <u>to the left.</u>
When y = |x - h|, the graph is shifted (or translated) <u>to the right.</u>
Step-by-step explanation:
Part A:
The parent function of vertex graphs are y = |x|, and any transformations done to y = |x| are shown in this format (also known as vertex form): y = a|x - h| + k
(h , k) is the vertex of the graph.
So, for the first part, what y = |x + h| is saying is y = |x - (-h)|.
The -h is substituted for h, and negatives cancel out, resulting in x + h.
This translates to the left of the graph.
Part B:
For the second part, y = |x - h| looks just like the normal vertex form. In this one, we are just plugging in a positive value for h.
This translates to the right of the graph.
Answer:13.333333 repeating
Step-by-step explanation:money divided by how much the games cost
Answer:
Step-by-step explanation:
There are 3 ways to find the other x intercept.
1) Polynomial Long Division.
Divide x^2 - 3x + 2 by the binomial x - 2, because by the Factor Theorem if a is a root of a polynomial then x - a is a factor of said polynomial.
2) Just solving for x when y = 0, by using the quadratic formula.
.
So the other x - intercept is at (1, 0)
3) Using Vietta's Theorem regarding the solutions of a quadratic
Namely, the sum of the solutions of a quadratic equation is equal to the quotient between the negative coefficient of the linear term divided by the coefficient of the quadratic term.

And the product between the solutions of a quadratic equation is just the quotient between the constant term and the coefficient of the quadratic term.

These relations between the solutions give us a brief idea of what the solutions should be like.