It is these nuts go chu now do your own homework
The series converges to 1/(1-9x) for -1/9<x<1/9
Given the series is ∑ 
We have to find the values of x for which the series converges.
We know,
∑
converges to (a) / (1-r) if r < 1
Otherwise the series will diverge.
Here, ∑
is a geometric series with |r| = | 9x |
And it converges for |9x| < 1
Hence, the given series gets converge for -1/9<x<1/9
And geometric series converges to a/(1-r)
Here, a = 1 and r = 9x
Therefore, a/(1-r) = 1/(1-9x)
Hence, the given series converges to 1/1-9x for -1/9<x<1/9
For more information about convergence of series, visit
brainly.com/question/15415793
#SPJ4
What value (number) is the tens place?
It is unchanged because the same number would still be in the middle and there would still be the same amount of numbers
if
11,15,21,22,23,27,30 before 22 is the median
if
11,15,21,22,23,27,30 after 22 is still the median
The median is unchanged