<span>3/5t - 4 - 7/10t = -2
</span><span>3/5t - 7/10t = -2 + 4
</span><span>6/10t - 7/10t = 2
-1/10t = 2
t =2 (-10)
t = -20
answer is </span>A. -20
Answer: 36
Step-by-step explanation:
Add multiply divide
Answer:
AB = 75
BC = 60
AC = 45
m∠A = 53°
m∠B = 37°
m∠C = 90°
Step-by-step explanation:
<u>Trigonometric ratios</u>
![\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}](https://tex.z-dn.net/?f=%5Csf%20%5Csin%28%5Ctheta%29%3D%5Cdfrac%7BO%7D%7BH%7D%5Cquad%5Ccos%28%5Ctheta%29%3D%5Cdfrac%7BA%7D%7BH%7D%5Cquad%5Ctan%28%5Ctheta%29%3D%5Cdfrac%7BO%7D%7BA%7D)
where:
is the angle- O is the side opposite the angle
- A is the side adjacent the angle
- H is the hypotenuse (the side opposite the right angle)
Given:
![\sf \tan(A)=\dfrac{60}{45}](https://tex.z-dn.net/?f=%5Csf%20%5Ctan%28A%29%3D%5Cdfrac%7B60%7D%7B45%7D)
Therefore:
- side opposite angle A = BC = 60
- side adjacent angle A = AC = 45
To find the length of AB (the hypotenuse), use Pythagoras’ Theorem:
![a^2+b^2=c^2](https://tex.z-dn.net/?f=a%5E2%2Bb%5E2%3Dc%5E2)
(where a and b are the legs, and c is the hypotenuse, of a right triangle)
⇒ AC² + BC² = AB²
⇒ 45² + 60² = AB²
⇒ AB² = 5625
⇒ AB = √5625
⇒ AB = 75
To find m∠A:
![\implies\sf \tan(A)=\dfrac{60}{45}](https://tex.z-dn.net/?f=%5Cimplies%5Csf%20%5Ctan%28A%29%3D%5Cdfrac%7B60%7D%7B45%7D)
![\implies\sf A=\tan^{-1}\left(\dfrac{60}{45}\right)](https://tex.z-dn.net/?f=%5Cimplies%5Csf%20A%3D%5Ctan%5E%7B-1%7D%5Cleft%28%5Cdfrac%7B60%7D%7B45%7D%5Cright%29)
![\implies\sf A=53^{\circ}\:(nearest\:degree)](https://tex.z-dn.net/?f=%5Cimplies%5Csf%20A%3D53%5E%7B%5Ccirc%7D%5C%3A%28nearest%5C%3Adegree%29)
m∠C = 90° (as it is a right angle)
The interior angles of a triangle sum to 180°
⇒ m∠A + m∠B + m∠C = 180°
⇒ 53° + m∠B + 90° = 180°
⇒ m∠B = 180° - 53° - 90°
⇒ m∠B = 37°
0.00869565217
There you go.