Answer:
The time taken to stop the box equals 1.33 seconds.
Explanation:
Since frictional force always acts opposite to the motion of the box we can find the acceleration that the force produces using newton's second law of motion as shown below:

Given mass of box = 5.0 kg
Frictional force = 30 N
thus

Now to find the time that the box requires to stop can be calculated by first equation of kinematics
The box will stop when it's final velocity becomes zero

Here acceleration is taken as negative since it opposes the motion of the box since frictional force always opposes motion.
For balancing the lever, force on both the sides shall be equal. so,
Force on 3 m end = m × a = 3 × 98.1 = 294.3
Now, on 6 m end, it would be: = 294.3/6 = 49.05
After rounding-off to the nearest hundredth value, it would be: 49 N
Finally, Option A would be your correct answer.
Hope this helps!
<h3>Answer:</h3>
- 24.5 km/h
- 4 17/27 m/s
- 11/3 m/s²
<h3>Explanation:</h3>
1. The average speed is the ratio of total distance to total time:
... speed = distance/time = (92 km +55 km)/(3 h +3h) = (147 km)/(6 h)
... = 24.5 km/h
2. speed = distance/time = (125 m)/(27 s) = 4 17/27 m/s
3. a = ∆v/∆t = (15 m/s -4 m/s)/(3 s) = 11/3 m/s²
I have a formula here that might just help you solve the problem on your own:
The number of images depends on the angle between the two mirrors. The number of images formed in two plane mirrors inclined at an angle A to each other is given by the formula:
Number of images = 360<span>/A - 1.
</span>
I hope my guide has come to your help. God bless and have a nice day ahead!
Answer:
B. moving faster than car B, but not necessarily accelerating
Explanation:
Velocity is the speed of something. So car A's velocity is greater than car B but does not mean car A is accelerating.