Answer:
The (s) indicates that the state of matter for NaHCO3 is solid.
Explanation:
When a chemical reaction is written, the state of matter for each components of the reactants and products are mentioned in brackets along with their names or formulas.
For example, NaHCO3 has (s) mentioned in the brackets. The s shows that the state of matter for NaHCO3. (l) represents liquid format. (g) represents that the state of matter is gas.
The JWST is postioned about 1.5 million kilometers from the earth on the side facing away from the sun
Answer:
<h3>The answer is 500 kg</h3>
Explanation:
The mass of the object can be found by using the formula

v is the velocity
KE is the kinetic energy
From the question we have

We have the final answer as
<h3>500 kg</h3>
Hope this helps you
Most of the radiation, however, is absorbed by the earth's surface. ... Every surface on earth absorbs and reflects energy at varying degrees, based on its color and texture. Dark-colored objects absorb more visible radiation; light-colored objects reflect more visible radiation.
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s