Answer:
17%
Step-by-step explanation:
it's basically just 17/100 which would be 17%
Answer:
11
Step-by-step explanation:
Use corresponding angles.
Angle FBC is 180 - 147 which is 33.
This means x is 180 - 33 - Angle EBA.
EBA is 180 - 4x.
x = 180 - 33 - (180 - 4x)
x = 180 - 33 - 180 + 4x
-3x = 180 - 33 - 180
-3x = -33
3x = 33
x = 11
Please mark brainliest.
Answer:
Margin of Error = 5.4088 ;
Confidence interval = (30.1 ; 40.9)
Interval estimate are almost the same
Step-by-step explanation:
Given that :
Population standard deviation, σ = 9.3
Sample size, n = 8
Xbar = 35.5
Confidence level = 90%
The confidence interval:
Xbar ± Margin of error
Margin of Error = Zcritical * σ/sqrt(n)
Zcritical at 90% = 1.645
Margin of Error = 1.645 * 9.3/sqrt(8) = 5.4088
Confidence interval :
Xbar ± Margin of error
35.5 ± 5.4088
Lower boundary = (35.5 - 5.4088) = 30.0912 = 30.1
Upper boundary = (35.5 + 5.4088) = 40.9088 = 40.9
(30.1 ; 40.9)
T distribution =. (30.5 ; 40.5)
Normal distribution = (30.1, 40.9)
The <em>directional</em> derivative of
at the given point in the direction indicated is
.
<h3>How to calculate the directional derivative of a multivariate function</h3>
The <em>directional</em> derivative is represented by the following formula:
(1)
Where:
- Gradient evaluated at the point
.
- Directional vector.
The gradient of
is calculated below:
(2)
Where
and
are the <em>partial</em> derivatives with respect to
and
, respectively.
If we know that
, then the gradient is:
![\nabla f(r_{o}, s_{o}) = \left[\begin{array}{cc}\frac{s}{1+r^{2}\cdot s^{2}} \\\frac{r}{1+r^{2}\cdot s^{2}}\end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla%20f%28r_%7Bo%7D%2C%20s_%7Bo%7D%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7Bs%7D%7B1%2Br%5E%7B2%7D%5Ccdot%20s%5E%7B2%7D%7D%20%5C%5C%5Cfrac%7Br%7D%7B1%2Br%5E%7B2%7D%5Ccdot%20s%5E%7B2%7D%7D%5Cend%7Barray%7D%5Cright%5D)
![\nabla f (r_{o}, s_{o}) = \left[\begin{array}{cc}\frac{3}{1+1^{2}\cdot 3^{2}} \\\frac{1}{1+1^{2}\cdot 3^{2}} \end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla%20f%20%28r_%7Bo%7D%2C%20s_%7Bo%7D%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B1%2B1%5E%7B2%7D%5Ccdot%203%5E%7B2%7D%7D%20%5C%5C%5Cfrac%7B1%7D%7B1%2B1%5E%7B2%7D%5Ccdot%203%5E%7B2%7D%7D%20%5Cend%7Barray%7D%5Cright%5D)
![\nabla f (r_{o}, s_{o}) = \left[\begin{array}{cc}\frac{3}{10} \\\frac{1}{10} \end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla%20f%20%28r_%7Bo%7D%2C%20s_%7Bo%7D%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B10%7D%20%5C%5C%5Cfrac%7B1%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D)
If we know that
, then the directional derivative is:
![\nabla_{\vec v} f = \left[\begin{array}{cc}\frac{3}{10} \\\frac{1}{10} \end{array}\right] \cdot \left[\begin{array}{cc}5\\10\end{array}\right]](https://tex.z-dn.net/?f=%5Cnabla_%7B%5Cvec%20v%7D%20f%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B3%7D%7B10%7D%20%5C%5C%5Cfrac%7B1%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%5C%5C10%5Cend%7Barray%7D%5Cright%5D)

The <em>directional</em> derivative of
at the given point in the direction indicated is
. 
To learn more on directional derivative, we kindly invite to check this verified question: brainly.com/question/9964491