You first separate the triangle from the rectangle. Then multiply one side be one side.
Observation one
From the markings on the diagram <1 = 60o The left triangle is at least isosceles. Therefore equal sides produce equal angles opposite them.
Now we have accounted for 2 angles that are equal (each is 60 degrees) and add up to 120 degrees. The third angle (angle 2) is found from this equation.
<1 + 60 + <2 = 180 degrees. All triangles have 180 degrees.
60 + 60 + <2 = 180
Observation 2
<2 = 60 degrees.
120 + <2 = 180
m<2 = 180 - 120
m<2 = 60 degrees.
Observation 3
m<3 = 120
<2 and <3 are supplementary.
Any 2 angles on the same straight line are supplementary
60 + <3 = 180
<3 = 180 - 60
<3 = 120
Observation 4
m<4 = 40 degrees.
All triangles have 180 degrees. No exceptions.
m<4 + 20 +m<3 = 180
m<4 + 20 + 120 = 180
m<4 + 140 = 180
m<4 = 180 - 140
m<4 = 40
Answer:
0.43* 0.35 = 0.1505 or 0.15 after rounding
Step-by-step explanation:
Answer: Option D.
Step-by-step explanation:
To solve this exercise you must keep on mind the Angle at the Center Theorem.
According to the Angle at the Center Theorem, an inscribed angle is half of the central angle.
Therefore, given in the inscribed angle m∠BAC=35°, you can calculate the central angle m∠EFD as following:

- Solve for EFD.

- When you substitute values. you obtain:

Answer:

Step-by-step explanation:
The 5th term of the arithmetic sequence is 53. We can write the equation:

The 6th term of the arithmetic sequence is 62. We can write the equation:

Subtract the first equation from the second one to get:


The first term is




The 38th term of the sequence is given by:


