23 would be the answer hope it helps
The linear equation is y = 4 + 0.5x
<h3>How to determine the equation?</h3>
The points are given as: (-2,3) and (4,6)
The equation is then calculated using:

Substitute the known values

Evaluate
y = 0.5 *(x+2) + 3
Expand
y = 0.5x + 1 + 3
Evaluate the sum
y = 0.5x + 4
Rewrite as:
y = 4 + 0.5x
Hence, the equation is y = 4 + 0.5x
Read more about linear equations at:
brainly.com/question/14323743
#SPJ1
Answer: Area of the shaded region is 6.867 square cm
Step-by-step explanation:
The shaded area corresponds to the difference of the area of the rectangle and the area of the semicircle.
Area of the rectangle = 4 times 8 = 32 cm^2
Area of the semicircle = 0.5 * pi * r^2 (where r is the radius, i.e., half of the diameters, i.e., 4 cm). So Area = 0.5*pi*4^2 = 25.133 cm^2
The difference: 32 - 25.133 = 6.867 cm^2 (area of the shaded region)
Answer:
Bias for the estimator = -0.56
Mean Square Error for the estimator = 6.6311
Step-by-step explanation:
Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.
To find - Determine the bias and the mean squared error for this estimator of the mean.
Proof -
Let us denote
X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)
Now,
An estimate of mean, μ is suggested as

Now
Bias for the estimator = E(μ bar) - μ
= 
= 
= 
= 
= 
= 3.9375 - 4.5
= - 0.5625 ≈ -0.56
∴ we get
Bias for the estimator = -0.56
Now,
Mean Square Error for the estimator = E[(μ bar - μ)²]
= Var(μ bar) + [Bias(μ bar, μ)]²
= 
= 
= ![\frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})] }) + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%28%20%5B%7B3Var%28X_%7B1%7D%29%20%2B%204Var%28X_%7B2%7D%29%5D%20%20%7D%29%20%2B%200.3136)
= ![\frac{1}{64} [{3(57.76) + 4(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B%7B3%2857.76%29%20%2B%204%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [7(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B7%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [404.32] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B404.32%5D%20%20%7D%20%2B%200.3136)
= 
= 6.6311
∴ we get
Mean Square Error for the estimator = 6.6311
The statement that 99% of all confidence intervals with a 99% confidence level should contain the population parameter of interest is false.
A confidence interval (CI) is essentially a range of estimates for an unknown parameter in frequentist statistics. The most frequent confidence level is 95%, but other levels, such 90% or 99%, are infrequently used for generating confidence intervals.
The confidence level is a measurement of the proportion of long-term associated CIs that include the parameter's true value. This is closely related to the moment-based estimate approach.
In a straightforward illustration, when the population mean is the quantity that needs to be estimated, the sample mean is a straightforward estimate. The population variance can also be calculated using the sample variance. Using the sample mean and the true mean's probability.
Hence we can generally infer that the given statement is false.
To learn more about confidence intervals visit:
brainly.com/question/24131141
#SPJ4