Answer:
Step-by-step explanation:
Since none of the answer choices match the drawing of the gardener, we assume the question is referring to the drawing of the partner.
The gardener's drawing is 1/4 of actual size. So, in terms of the gardener's drawing, actual size is ...
gardener's drawing = (1/4)actual size
actual size = 4(gardener's drawing)
__
The partner's drawing is 1/20 of actual size, so is ...
partner's drawing = actual size/20 = (4(gardener's drawing))/20
partner's drawing = (4/20)(gardener's drawing)
partner's drawing = (gardener's drawing)/5
__
Then the {length, width} of the partner's drawing are ...
partner's drawing {length, width} = {15 in, 10 in}/5 = {3 in, 2 in}
The partner's drawing has a length of 3 inches and a width of 2 inches.
Answer:
False i just did it
Step-by-step explanation:
Answer:
> a<-rnorm(20,50,6)
> a
[1] 51.72213 53.09989 59.89221 32.44023 47.59386 33.59892 47.26718 55.61510 47.95505 48.19296 54.46905
[12] 45.78072 57.30045 57.91624 50.83297 52.61790 62.07713 53.75661 49.34651 53.01501
Then we can find the mean and the standard deviation with the following formulas:
> mean(a)
[1] 50.72451
> sqrt(var(a))
[1] 7.470221
Step-by-step explanation:
For this case first we need to create the sample of size 20 for the following distribution:

And we can use the following code: rnorm(20,50,6) and we got this output:
> a<-rnorm(20,50,6)
> a
[1] 51.72213 53.09989 59.89221 32.44023 47.59386 33.59892 47.26718 55.61510 47.95505 48.19296 54.46905
[12] 45.78072 57.30045 57.91624 50.83297 52.61790 62.07713 53.75661 49.34651 53.01501
Then we can find the mean and the standard deviation with the following formulas:
> mean(a)
[1] 50.72451
> sqrt(var(a))
[1] 7.470221
The answer is p=2s+7. Two plants can be grown from each seed packet, and Erin already has seven plants so you add that to the equation as well.