Answer:
8.48%
Step-by-step explanation:
Bill's weight decreases from 64.8 kg to 59.3 kg.
We need to find the percentage decrease in Bill's weight. It can be calculated as follows :

So, the required decrease in percentage is 8.48%.
Answer:
Exact Form: 2√26
Decimal Form: 10.19803902
…
Step-by-step explanation:
Answer:
C.13
Step-by-step explanation:
Answer:
The population of the city in 2002 is 469,280 while the population of the suburb is 730,720.
Step-by-step explanation:
- 6% of the city's population moves to the suburbs (and 94% stays in the city).
- 2% of the suburban population moves to the city (and 98% remains in the suburbs).
The migration matrix is given as:
![A= \left \begin{array}{cc} \\ C \\S \end{array} \right\left[ \begin{array}{cc} C&S\\ 0.94&0.06 \\0.02&0.98 \end{array} \right]](https://tex.z-dn.net/?f=A%3D%20%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20%5C%5C%20C%20%5C%5CS%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D)
The population in the year 2000 (initial state) is given as:
![\left[ \begin{array}{cc} C&S\\ 500,000&700,000 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%20500%2C000%26700%2C000%20%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city and the suburb in 2002 (two years after) is:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right\left[ \begin{array}{cc} 0.94&0.06 \\0.02&0.98 \end{array} \right]^2](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D%5E2)
![A^{2} = \left[ \begin{array}{cc} 0.8848 & 0.1152 \\\\ 0.0384 & 0.9616 \end{array} \right]](https://tex.z-dn.net/?f=A%5E%7B2%7D%20%3D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right \left[ \begin{array}{cc} 0.8848 & 0.1152 \\ 0.0384 & 0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 500,000*0.8848+700,000*0.0384& 500,000*0.1152 +700,000*0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 469280& 730720 \end{array} \right]](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20500%2C000%2A0.8848%2B700%2C000%2A0.0384%26%20500%2C000%2A0.1152%20%2B700%2C000%2A0.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20469280%26%20730720%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city in 2002 is 469,280 while the population of the suburb is 730,720.
Answer:
∠VXW = 57°
∠XVW = 56°
Step-by-step explanation:
Firstly, we need to remember the sum of a triangle's angle ALWAYS equals 180°.
Next, we see that two angles of △XYZ are given to us; 58° and 65°. Adding these two numbers would give us 123°. Now we need to subtract 123 from 180 to find the ∠YXZ; 180° - 123° = 57°.
Once we have this number, we need to remember a straight line also measures 180°. Line YW is important to find our answer, but first we need to find the answer to ∠WXZ. Since ∠YXZ and ∠WXZ come together and create the line YW, we can easily find the answer to ∠WXZ by subtracting ∠YXZ with 180; 180° - 57° = 123°
Now we need to find ∠VXW keeping the previous things I mentioned in mind; 180° - 123° = 57°. This is the answer to our first angle ∠VXW.
Since a triangle's angles always equal to 180° and we have the answer to two angles in △XVW, all we need to do is add then subtract;
67° + 57° = 124°
180° - 124° = 56°
And that is your answer!
∠VXW = 57°
∠XVW = 56°