Answer:
A) At point 1, local acceleration = 0.5 m/s²
At point 2, local acceleration = 1.0 m/s²
B) Average Eulerian convective acceleration over the two points in the cross section shown = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
Explanation:
Local acceleration at those points is the instantaneous acceleration at those points and it is given as
a = dv/dt
At point 1, v₁ = 0.5 t
a₁ =dv₁/dt = 0.5 m/s²
At point 2, v₂ = 1.0 t
a₂ = dv₂/dt = 1.0 m/s²
b) Average Eulerian convective acceleration over the two points in the cross section shown = (change of velocity between the two points)/time
Change of velocity between the two points = v₂ - v₁ = 1.0t - 0.5t = 0.5 t
Time = t
Average acceleration = 0.5t/t = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
More energy is released in nuclear reactions than in chemical reactions; this is because in nuclear reactions, mass is converted to energy. Nuclear energy released in nuclear fission and fusion is several 100 million times as large as an ordinary chemical reaction like the combustion process. The reason why nuclear energy release so much energy is because tremendous amounts of energy is released at one time. The nuclei in a nuclear reaction undergo a chain reaction, causing the neutrons to move extremely fast and release high amounts of energy.
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases
Answer:
by a rocking chair, a bouncing ball, a vibrating tuning fork, a swing in motion, the Earth in its orbit around the Sun, and a water wave.
Explanation:
Answer:
A. The target nucleus split into two nuclei, each with fewer nucleons than the original.
Explanation: