A current of 0. 82A flows through a light bulb. The charge passed through the light bulb during 94 s is 77.08C
The amount of charge flown for a given period of time determines the current passed through a bulb or electrical body.
The relation between the charge, current and time is given as:
Q = I × t
where, Q is the charge flown through bulb
I is the current passed through bulb
t is the time for which charge passes through bulb
Given,
I = 0.82A
t = 94s
Q = ?
Substituting the values in the above formula:
Q = I × t
Q = 0.82 × 94
Q = 77.08C
Hence, The charge passed through the light bulb during 94 s is 77.08C
Learn more about Current here, brainly.com/question/2264542
#SPJ4
The 1st one goes two added sodoes the second one then the third goes to removed then the fourth goes to added and the rest go to removed
Answer:
ΔP = (640 N/cm^2)
Explanation:
Given:-
- The volume increase, ΔV/V0 = 4 ✕ 10^-3
- The Bulk Modulus, B = 1.6*10^9 N/m^2
Find:-
Calculate the force exerted by the moonshine per square centimeter
Solution:-
- The bulk modulus B of a material is dependent on change in pressure or Force per unit area and change in volume by the following relationship.
B = ΔP / [(ΔV/V)]
- Now rearrange the above relation and solve for ΔP or force per unit area.
ΔP = B* [(ΔV/V)]
- Plug in the values:
ΔP = (1.6*10^9)*(4 ✕ 10^-3)
ΔP = 6400000 N/m^2
- For unit conversion from N/m^2 to N/cm^2 we have:
ΔP = (6400000 N/m^2) cm^2 / (100)^2 m^2
ΔP = (640 N/cm^2)
Initial velocity (u) = 2 m/s
Acceleration (a) = 10 m/s^2
Time taken (t) = 4 s
Let the final velocity be v.
By using the equation,
v = u + at, we get
or, v = 2 + 10 × 4
or, v = 2 + 40
or, v = 42
The final velocity is 42 m/s.