60 children tickets and 190 adult tickets were sold.
<u>Step-by-step explanation:</u>
Let the no. of adult tickets sold be 'a'
Let the no. of children tickets sold be 'c'
Total tickets sold = 250
Cost of 1 children ticket = $2.5
Cost of 1 adult ticket = $4
Total money collected= $910
Given that,
a + c = 250
a = 250 - c
4a + 2.5c = 910
Substitute a value
4(250 - c) + 2.5c = 910
1000 - 4c + 2.5c = 910
1000 - 1.5c = 910
-1. 5c = -90
1.5c = 90
c = 90/1.5
c = 60
a + c = 250
a + 60 = 250
a = 190
60 children tickets and 190 adult tickets were sold.
Answer:
96b-60
Step-by-step explanation:
12(8b-5)=
12*8b - 5*12 =
96b-60
I) HCF - use the smallest powers of each common factors
HCF (A,B) = 2^2 × 3^4 × 5^2
LCM - use the highest powers of each factors
LCM (A,B) = 2^4 × 3^6 × 5^2 × 7^2 × 11^16
ii) Add powers together.
A×B = 2^6 × 3^10 × 5^4 × 7^2 × 11^16
sqrt(A × B)
Divide powers by 2.
sqrt(A × B) = 2^3 × 3^5 × 5^2 × 7 × 11^8
iii) C = 3^7 × 5^2 × 7
Ck = (3^7 × 5^2 × 7) × k
B/c Ck should be a product that is a perfect cube, the powers of the products should be divisible by 3.
(3^7 × 5^2 × 7) × k = 3^9 × 5^3 × 7^3
k = (3^9 × 5^3 × 7^3) / (3^7 × 5^2 × 7)
k = 3^(9-7) × 5^(3-2) × 7^(3-1)
k = 3^2 × 5 × 7^2
Answer:
-108/9 + (-8/9)= -116/9= -12 8/9