x⁴ + x = 0
x(x³) + x(1) = 0
x(x³ + 1) = 0
x = 0 or x³ + 1 = 0
- 1 - 1
x³ = -1
x = -1
Answer:
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
Step-by-step explanation:
Answer:
The answer is cosx cot²x ⇒ the first answer
Step-by-step explanation:
∵ cot²x = cos²x/sin²x
∵ secx = 1/cosx
∴ cot²x secx - cosx = (cos²x/sin²x)(1/cosx) - cosx
= (cosx/sin²x) - cosx
Take cosx as a common factor
∴ cosx[(1/sin²x) - 1] ⇒ use L.C.M
∴ cosx[1-sin²x/sin²x]
∵ 1 - sin²x = cos²x
∴ cosx(cos²x/sin²x) = cosx cot²x