Answer:
6
Step-by-step explanation:
From the Trapezoid attached :
EF = GT
FG = LA
LE = AT = 10
LA = 24 ; FG = 24
FG + EF + GT = 40
Let : EF and GT = x
FG + 2x = 40
24 + 2x = 40
2x = 40 - 24
2x = 16
x = 16 ÷ 2 = 8
Hence, EF = GT = 8
Using Pythagoras :
Opposite² = hypotenus² - Adjacent²
LF² = LE² - FE²
LF² = 10² - 8²
LF² = 100 - 64
LF² = 36
LF = √36
LF = 6
<h3>
Answer:</h3>
(x, y) = (7, -5)
<h3>
Step-by-step explanation:</h3>
It generally works well to follow directions.
The matrix of coefficients is ...
![\left[\begin{array}{cc}2&4\\-5&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C-5%263%5Cend%7Barray%7D%5Cright%5D)
Its inverse is the transpose of the cofactor matrix, divided by the determinant. That is ...
![\dfrac{1}{26}\left[\begin{array}{ccc}3&-4\\5&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B26%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-4%5C%5C5%262%5Cend%7Barray%7D%5Cright%5D)
So the solution is the product of this and the vector of constants [-6, -50]. That product is ...
... x = (3·(-6) +(-4)(-50))/26 = 7
... y = (5·(-6) +2·(-50))/26 = -5
The solution using inverse matrices is ...
... (x, y) = (7, -5)
Answer:
37.5% that is the answer
Step-by-step explanation: