The floor tile is made up of 5 pieces of 2 inches by 2 inches square.
Area of 1 square = 2 x 2 = 4 in²
Area of 5 square = 4 x 5 = 20 in²
Volume of the floor tile = 20 x 3/4 = 15 in³
------------------------------------------
Answer: 15 in³ (Answer G)
------------------------------------------
A F is 309. 16 + 5 + 30 = 51. 360 - 51 = 309
Hope this helped :D
Answer:
9. 66°
10. 44°
11. 
12. 
13. 27.3
14. 33.9
15. 22°
16. 24°
Step-by-step explanation:
9. Add 120 + 80 (equals 200) and subtract that from 360 (Because all angles in a quadrilteral add to 360°), this equals 160. Plug the same number in for both variables in the two other angle equations until the two angles add to 160. For shown work on #9, write:
120 + 80 = 200
360 - 200 = 160
12(5) + 6 = 66°
19(5) - 1 = 94°
94 + 66 = 160
10. Because the two sides are marked as congruent, the two angles are as well. This means the unlabeled angle is also 68°. The interior angles of a triangle always add to 180°, so add 68+68 (equals 136) and subtract that from 180, this equals 44. For shown work on #10, write:
68 x 2 = 136
180 - 136 = 44
11. Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #10, write:
a² + b² = c²
a² + 6² = 8²
a² + 36 = 64
a² = 28
a = 
a = 
12. (Same steps as #11) Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #11, write:
a² + b² = c²
a² + 2² = 4²
a² + 4 = 16
a² = 12
a = 
a = 
13. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #13, write:
Sin(47°) = 
x = 27.3
14. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #14, write:
Tan(62°) = 
x = 33.9
15. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #15, write:
cos(θ) = 52/56
θ = cos^-1 (0.93)
θ = 22°
16. (Same steps as #15) Use SOH CAH TOA and solve with a scientific calculator. For shown work on #16, write:
sin(θ) = 4/10
θ = sin^-1 (0.4)
θ = 24°
Good luck!!
Answer:
y = - 2x + 6
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = 
with (x₁, y₁ ) = (1, 4 ) and (x₂, y₂ ) = (2, 2 )
m =
=
= - 2 , then
y = - 2x + c ← is the partial equation
To find c substitute either of the 2 points into the partial equation
Using (2, 2 ) , then
2 = - 4 + c ⇒ c = 2 + 4 = 6
y = - 2x + 6 ← equation of line
Answer:
21 cm
Step-by-step explanation:
Call the triangle ABC, with the right angle at B, the hypotenuse AC=25, and the given leg AB=10. The altitude to the hypotenuse can be BD. Since the "other leg" is BC, we believe the question is asking for the length of DC.
The right triangles formed by the altitude are all similar to the original. That means ...
AD/AB = AB/AC . . . . . . ratio of short side to hypotenuse is a constant
Multiplying by AB and substituting the given numbers, we get ...
AD = AB²/AC = 10²/25
AD = 4
Then the segment DC is ...
DC = AC -AD = 25 -4
DC = 21 . . . . . centimeters