Answer:
b
Step-by-step explanation:
9/4=2.25
13.5/6=2.25
18/8=2.25
You're looking for the extreme values of
subject to the constraint
.
The target function has partial derivatives (set equal to 0)


so there is only one critical point at
. But this point does not fall in the region
. There are no extreme values in the region of interest, so we check the boundary.
Parameterize the boundary of
by


with
. Then
can be considered a function of
alone:



has critical points where
:



but
for all
, so this case yields nothing important.
At these critical points, we have temperatures of


so the plate is hottest at (1, 0) with a temperature of 14 (degrees?) and coldest at (-1, 0) with a temp of -12.
Using translation concepts, considering the vertices (x,y) of figure p, the following rule is applied to find the vertices of figure r.
(x,y) -> (x + 4, y).
<h3>What is a translation?</h3>
A translation is represented by a change in the function graph, according to operations such as multiplication or sum/subtraction either in it’s definition or in it’s domain. Examples are shift left/right or bottom/up, vertical or horizontal stretching or compression, and reflections over the x-axis or the y-axis.
When a figure is shifted 4 units to the right, <u>4 is added to the x-coordinate</u>, hence, considering the vertices (x,y) of figure p, the following rule is applied to find the vertices of figure r.
(x,y) -> (x + 4, y).
More can be learned about translation concepts at brainly.com/question/28416763
#SPJ1