<span>Dawn was at 6 am.
Variables
a = distance from a to passing point
b = distance from b to passing point
c = speed of hiker 1
d = speed of hiker 2
x = number of hours prior to noon when dawn is
The first hiker travels for x hours to cover distance a, and the 2nd hiker then takes 9 hours to cover that same distance. This can be expressed as
a = cx = 9d
cx = 9d
x = 9d/c
The second hiker travels for x hours to cover distance b, and the 1st hiker then takes 4 hours to cover than same distance. Expressed as
b = dx = 4c
dx = 4c
x = 4c/d
We now have two expressions for x, set them equal to each other.
9d/c = 4c/d
Multiply both sides by d
9d^2/c = 4c
Divide both sides by c
9d^2/c^2 = 4
Interesting... Both sides are exact squares. Take the square root of both sides
3d/c = 2
d/c = 2/3
We now know the ratio of the speeds of the two hikers. Let's see what X is now.
x = 9d/c = 9*2/3 = 18/3 = 6
x = 4c/d = 4*3/2 = 12/2 = 6
Both expressions for x, claim x to be 6 hours. And 6 hours prior to noon is 6am.
We don't know the actual speeds of the two hikers, nor how far they actually walked. But we do know their relative speeds. And that's enough to figure out when dawn was.</span>
Answer:
5/4,2.5,3.7,4.75,5.5,6,28,29
Step-by-step explanation:
(-3x)⁴
Basically, just do this :
(-3x) × (-3x) × (-3x) × (-3x)
So now you have 9x² × 9x²
9 × 9 = 81
x² × x² = x⁴
So, your answer is 81x⁴
~Hope I helped!~
Answer:
8.20in³
Step-by-step explanation:
Given V = πr²h
r is the radius = 1.5in
h is the height = 6in
thickness of wall of the cylinder dr = 0.04in
top and bottom thickness dh 0.07in+0.07in = 0.14in
To compute the volume, we will find the value of dV
dV = dV/dr • dr + dV/dh • dh
dV/dr = 2πrh
dV/dh = πr²
dV = 2πrh dr + πr² dh
Substituting the values into the formula
dV = 2π(1.5)(6)•(0.04) + π(1.5)²(6) • 0.14
dV = 2π (0.36)+π(1.89)
dV = 0.72π+1.89π
dV = 2.61π
dV = 2.61(3.14)
dV = 8.1954in³
Hence volume, in cubic inches, of metal in the walls and top and bottom of the can is 8.20in³ (to two dp)