Hey, I’m pretty sure the answer is y=1/2x + 0.
To explain, we can plug the x value into the equation for all of the x values, and we will get our y value.
So the first one,
y=1/2(1) + 0 —> 1/2
The second one,
y=1/2(2) + 0 —> 1
And so forth, the rest of the equations will be correct. I hope that helps ! :D
Answer:
Step-by-step explanation: <_>
Hello,
Let's place the last digit: it must be 2 or 4 or 8 (3 possibilities)
It remainds 4 digits and the number of permutations fo 4 numbers is 4!=4*3*2*1=24
Thus there are 3*24=72 possibilities.
Answer A
If you do'nt believe run this programm
DIM n(5) AS INTEGER, i1 AS INTEGER, i2 AS INTEGER, i3 AS INTEGER, i4 AS INTEGER, i5 AS INTEGER, nb AS LONG, tot AS LONG
tot = 0
n(1) = 1
n(2) = 2
n(3) = 4
n(4) = 7
n(5) = 8
FOR i1 = 1 TO 5
FOR i2 = 1 TO 5
IF i2 <> i1 THEN
FOR i3 = 1 TO 5
IF i3 <> i2 AND i3 <> i1 THEN
FOR i4 = 1 TO 5
IF i4 <> i3 AND i4 <> i2 AND i4 <> i1 THEN
FOR i5 = 1 TO 5
IF i5 <> i4 AND i5 <> i3 AND i5 <> i2 AND i5 <> i1 THEN
nb = ((((n(i1) * 10) + n(i2)) * 10 + n(i3)) * 10 + n(i4)) * 10 + n(i5)
IF nb MOD 2 = 0 THEN
tot = tot + 1
END IF
END IF
NEXT i5
END IF
NEXT i4
END IF
NEXT i3
END IF
NEXT i2
NEXT i1
PRINT "tot="; tot
END
Answer:
E
Step-by-step explanation:
I just think so. Maybe it's right