The system has one solution
Step-by-step explanation:
Let us revise the type of the solutions of a system of equations
- One solution if the coefficients of x or/and y are different in the simplest form of the two equations
- Infinite many solutions if the coefficients of x , y and the numerical terms are equal in the simplest form of the two equations
- No solution if the coefficients of x and y are equal and the numerical terms are different in the simplest form of the two equations
The system of equations is:
y = 2x - 12 ⇒ (1)
y = 3x + 12 ⇒ (2)
∵ The equations are in its simplest form
∵ The coefficients of x in the two equations are different
- That is the 1st case above
∴ The system has one solution
Let us prove that by solving the system
To solve the system of equations equate (1) and (2) to find x
∵ 3x + 12 = 2x - 12
- Subtract 2x from both sides
∴ x + 12 = -12
- Subtract -12 from both sides
∴ x = -24
- Substitute the value of x in equation (1) or (2) to find y
∵ y = 3(-24) + 12
∴ y = -72 + 12
∴ y = -60
∴ The solution of the system is (-24 , -60)
The system has one solution
Learn more:
You can learn more about the system of equations in brainly.com/question/6075514
#LearnwithBrainly
Answer:
192 cards
Step-by-step explanation:
multiply the 16 cards by 12, 12x5=60=1 hour
I believe the answer is letter A
24
<em>Find</em><em> </em><em>the</em><em> </em><em>squa</em><em>re</em><em> </em><em>root</em><em> </em><em>of</em><em> </em><em>9</em><em>2</em><em>4</em><em>0</em><em> </em><em>=</em><em> </em><em>√</em><em>9</em><em>2</em><em>4</em><em>0</em><em> </em><em>=</em><em> </em><em>9</em><em>6</em><em>.</em><em>1</em><em>2</em><em>5</em><em>.</em><em>.</em><em>.</em><em> </em><em>now</em><em>,</em><em> </em><em>take</em><em> </em><em>the</em><em> </em><em>whole</em><em> </em><em>number</em><em> </em><em>in</em><em> </em><em>the </em><em>sq</em><em>uare</em><em> </em><em>root</em><em> </em><em>of</em><em> </em><em>9</em><em>2</em><em>4</em><em>0</em><em> </em><em>which</em><em> </em><em>is</em><em> </em><em>9</em><em>6</em><em> </em><em>and</em><em> </em><em>now</em><em> </em><em>squ</em><em>are</em><em> </em><em>this </em><em>number</em><em> </em><em>so</em><em>,</em><em> </em><em>9</em><em>6</em><em>²</em><em> </em><em>=</em><em> </em><em>9</em><em>2</em><em>1</em><em>6</em><em>.</em><em> </em><em>Take</em><em> </em><em>the</em><em> </em><em>9</em><em>2</em><em>1</em><em>6</em><em> </em><em>and </em><em>subtract</em><em> </em><em>it</em><em> </em><em>from</em><em> </em><em>9</em><em>2</em><em>4</em><em>0</em><em> </em><em>which</em><em> </em><em>is</em><em> </em><em>2</em><em>4</em><em>.</em>
Answer:
None of these
Step-by-step explanation:
Normally, we consider "weight" to be the force due to gravity that an object exerts in the downward direction. It has a positive value equal to the magnitude of "mg". In this instance, it would be ...
... |(10 kg)·(-9.8 N/kg)| = |-98 N| = 98 N
___
However, you're specifically told to use ...
... w = mg
... w = (10 kg)(-9.8 m/s²) = -98 N
This selection is not among those offered.