C is your answer. 5x + 2 = 17
First let’s get them all in terms of x:
Box kites = 3x
Dragon kites = x + 2
Butterfly kites = x
Adding all those up:
x + 3x + x + 2 = 17
Combine like terms:
5x + 2 = 17
Answer:
Answer
Step-by-step explanation:
300-28= g x 7
Answer:
A scatter plot (aka scatter chart, scatter graph) uses dots to represent values for two different numeric variables. The position of each dot on the horizontal and vertical axis indicates values for an individual data point
Answer: False
The x intercepts represent the roots or solutions of a polynomial equation. It is possible to have more than one solution.
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → A + B = π - C
→ B + C = π - A
→ C + A = π - B
→ C = π - (B + C)
Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]
Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B
Use the Double Angle Identity: sin 2A = 2 sin A · cos A
Use the Cofunction Identity: cos (π/2 - A) = sin A
<u>Proof LHS → Middle:</u>





![\text{Factor:}\quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BFactor%3A%7D%5Cquad%20%20%3D2%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5B%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B4%7D%5Cbigg%29%2B%5Csin%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5D)
![\text{Cofunction:}\quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]](https://tex.z-dn.net/?f=%5Ctext%7BCofunction%3A%7D%5Cquad%20%20%3D2%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5B%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B4%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi%7D%7B2%7D-%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D2%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7BA-B%7D%7B4%7D%5Cbigg%29%2B%5Ccos%20%5Cbigg%28%5Cdfrac%7B2%5Cpi-%28A%2BB%29%7D%7B4%7D%5Cbigg%29%5Cbigg%5D)
![\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5C%202%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Cbigg%5B2%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2%5Cpi-2B%7D%7B2%5Ccdot%204%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B2A-2%5Cpi%7D%7B2%5Ccdot%204%7D%5Cbigg%29%5Cbigg%5D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D4%5Ccos%20%5Cbigg%28%5Cdfrac%7BA%2BB%7D%7B4%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi-B%7D%7B4%7D%5Cbigg%29%5Ccdot%20%5Ccos%20%5Cbigg%28%5Cdfrac%7B%5Cpi%20-A%7D%7B4%7D%5Cbigg%29)

LHS = Middle 
<u>Proof Middle → RHS:</u>

Middle = RHS 