Answer:
Kindly check explanation
Step-by-step explanation:
Given the following :
Equation of regression line :
Yˆ = −114.05+2.17X
X = Temperature in degrees Fahrenheit (°F)
Y = Number of bags of ice sold
On one of the observed days, the temperature was 82 °F and 66 bags of ice were sold.
X = 82°F ; Y = 66 bags of ice sold
1. Determine the number of bags of ice predicted to be sold by the LSR line, Yˆ, when the temperature is 82 °F.
X = 82°F
Yˆ = −114.05+2.17(82)
Y = - 114.05 + 177.94
Y = 63.89
Y = 64 bags
2. Compute the residual at this temperature.
Residual = Actual value - predicted value
Residual = 66 - 64 = 2 bags of ice
AG and GB must be congruent and CG and GD must be congruent as well
The minimum of this graph is the focus of the parabola. I'm not sure with the maximum though but I think it doesn't have a maximum because the y value of the parabola will extend infinitely upward.
True, Integers mean "whole", and it cannot be a fraction or decimal
hope this helps