Answer: 1/5 or 0.2 in decimal form.
Explanation:
There are 60 seconds in a minute. We know the river flows 12 ft per 1 minute. So in order to find the rate per seconds, divide: 60/12. You get the answer: 1/5 or 0.2 in decimal form.
Answer:
Step-by-step explanation:
Answer "A"
Dodecahedron
Answer:
1) Divide the numerator by the denominator.
2) Write down the whole number result.
3) Use the remainder as the new numerator over the denominator. This is the fraction part of the mixed number.
Step-by-step explanation:
not sure of this will help... but hope it does!
Answer:
a)g: 3x + 4y = 10 b) a:x+y = 5 c) c: 3x + 4y = 10
h: 6x + 8y = 5 b:2x + 3y = 8 d: 6x + 8y = 5
Step-by-step explanation:
a) Has no solution
g: 3x + 4y = 10
h: 6x + 8y = 5
Above Equations gives you parallel lines refer attachment
b) has exactly one solution
a:x+y = 5
b:2x + 3y = 8
Above Equations gives you intersecting lines refer attachment
c) has infinitely many solutions
c: 3x + 4y = 10
d: 6x + 8y = 5
Above Equations gives you collinear lines refer attachment
i) if we add x + 2y = 1 to equation x + y = 5 to make an inconsistent system.
ii) if we add x + 2y = 3 to equation x + y = 5 to create infinitely system.
iii) if we add x + 4y = 1 to equation x + y = 5 to create infinitely system.
iv) if we add to x + y =5 equation x + y = 5 to change the unique solution you had to a different unique solution
Answer:
n = 19.89694
Step-by-step explanation:
You can work the problem using decimal numbers. There is no need to convert everything to integers. Trying to do so just gets you in trouble.
Subtract 2.2 from both sides:
-1.398 -2.200 = n/-5.53
-3.598 = n/-5.53
Now, multiply both sides by -5.53:
(-5.53)(-3.598) = n = 19.89694
_____
The one rule that cannot be violated in algebra is that <em>you must do the same thing to both sides of the equation</em>.
_____
Your "solution" so far has a couple of errors. The first is that you have apparently multiplied all of the numbers by 1000. Unfortunately, when you multiply a denominator by 1000, it is the same as dividing by 1000. So, you have multiplied the left side by 1000, multiplied one term on the right by 1000 and divided another term on the right by 1000. This turns the equation into something different than what you started with, and will give a wrong answer.
The second error is that you have subtracted 2200 only from the right side. This, too, will turn the equation into something different than what you started with, and will give a wrong answer.