Random changes in allele frequency in a population are usually called genetic drift. The reason why this is the answer is because it is a very specific word which is used to describe exactly that - random changes in allele frequency.
All the other cases; answers, here aren't correct and don't apply.
False. Agribusiness is agriculture conducted on a large, commercial scale.
Prophase I
The chromosomes condense, and the nuclear envelope breaks down & crossing-over occurs.
Metaphase I
Pairs of homologous chromosomes move to the equator of the cell.
Anaphase I
Homologous chrmosomes move to the oppisite poles of the cell.
Telophase I and Cytokinesis
Chromosomes gather at the poles of the cells & the cytoplasm divides.
Prophase II
A new spidle forms around the chromosomes.
Metaphase II
Chromosomes line up at the equator.
Anaphase II
Centromeres divides & chromatids move to the opposite poles of the cells.
Telophase II and Cytokinesis
A nuclear envelope forms around each set of chromosomes & the cytoplasm divides.
Answer:
E (Red shows incomplete dominance over white)
Explanation:
This portrays a monohybrid cross involving a single gene coding for flower colour in snapdragon plants. According to the question, a purebreeding red flowered (homozygous) plant is crossed with a purebreeding white flowered (homozygous) plant to produce an all pink flowered offspring. This phenomenon is called INCOMPLETE DOMINANCE.
Mendel, in his experiments, discovered that an allele can mask the expression of another in a heterozygous state. He called the allele that masks DOMINANT allele while the allele that is masked RECESSIVE allele. However, exceptions like INCOMPLETE DOMINANCE, has occurred in the sense that an allele does not completely mask the expression of its allelic pair, instead an intermediate phenotype, which is a combination/blending of both parental phenotypes is produced.
In this case, the red flowered snapdragon (RR) does not completely cover up the expression of white flower (rr), hence a hybrid/heterozygous offspring is produced that combines the phenotypic characteristics of both parents to form an intermediate flower colour (pink). Hence, it can be said that Red flower is incompletely dominant over white flower or no allele/trait is dominant or recessive to another.