1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
3 years ago
7

Find the circumference of the circle. Round your answer to the nearest hundredth. Use 3.14 or pi circle is 3 ft in radius

Mathematics
2 answers:
densk [106]3 years ago
8 0

Answer:

18.84 feet

Step-by-step explanation:

The circumference of a circle can be found using:

c=π*d

The radius is given, but we have to find diameter. The diameter is twice the radius, or

d=2r

The radius is 3 feet. Substitute 3 in for r.

d=2*3

d=6

The diameter is 6 feet.

Now we have the diameter. We can substitute 6 in for d in the circumference formula. We can also substitute 3.14 in for pi.

c=π*d

c=3.14*6

c=18.84

The circumference is <u>18.84 feet</u>

zalisa [80]3 years ago
5 0

Answer:

18.85ft

Step-by-step explanation:

You might be interested in
........................................
Elena L [17]

Answer:

The answer I got for this equation is x=5

I hope this image helps of showing you how to solve the equation.

5 0
3 years ago
A chord has ___________ endpoint(s) on a circle.<br> A. Three<br> B. None<br> C. One <br> D. Two
AveGali [126]

Answer:

The answer is D - Two

Step-by-step explanation:

a chord has two endpoints on a circle

5 0
3 years ago
Given that lines b and c are parallel, and the m&lt;1=4x-30 and m&lt;5=2x+50. Find the measure of angle 1 and measure of angle 7
AfilCa [17]
4x-30=2x+50
+30 +30

4x=2x+80
-2x -2x

2x=80
/2 /2

X=40

4(40)-30=130°

2(40)+50=130°

180-130=50°

Angle 7=50°

5 0
2 years ago
Rationalise the denominator of:<br>1/(√3 + √5 - √2)​
Paul [167]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} }

can be re-arranged as

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}   -   \sqrt{2}   +  \sqrt{5} }

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }  \times \dfrac{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ {( \sqrt{3}  -  \sqrt{2} )}^{2}  -  {( \sqrt{5}) }^{2} }

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{3 + 2 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{5 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{ - ( -  \sqrt{3} +  \sqrt{2}  + \sqrt{5}) }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}  \times \dfrac{ \sqrt{6} }{ \sqrt{6} }

\rm \:  =  \: \dfrac{-  \sqrt{18} +  \sqrt{12}  + \sqrt{30}}{2  \times 6}

\rm \:  =  \: \dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}

\rm \:  =  \: \dfrac{-  3\sqrt{2} + 2 \sqrt{3}   + \sqrt{30}}{12}

Hence,

\boxed{\tt{ \rm \dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} } =\dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>More Identities to </u><u>know:</u></h3>

\purple{\boxed{\tt{  {(x  -  y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{3} =  {x}^{3} + 3xy(x + y) +  {y}^{3}}}}

\purple{\boxed{\tt{  {(x - y)}^{3} =  {x}^{3} - 3xy(x  -  y) -  {y}^{3}}}}

\pink{\boxed{\tt{  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}}

\pink{\boxed{\tt{  {(x + y)}^{2}  -  {(x - y)}^{2} = 4xy}}}

6 0
3 years ago
Let f(x) = |x| for all real numbers x. Write the formula for the function represented by the described
Ostrovityanka [42]

Answer:

y=(\frac{1}{3}f(x-3))-1

Step-by-step explanation:

Please see the picture below.

1. Given the function f(x) = |x|, applying a vertical stretch with scale factor \frac{1}{3}, we have the transformed function:

y=\frac{1}{3}f(x)

2. Applying a translation of 3 units to the right, we have:

y=\frac{1}{3}f(x-3)

3. Finally applying a translation down of 1 unit, we have:

y=(\frac{1}{3}f(x-3))-1

6 0
3 years ago
Other questions:
  • Simplify the expression<br> 4p - 5(p+6)
    9·2 answers
  • The eighth grade girls basketball team played a total of 13 games this season if they scored a total of 364 points what was thei
    12·2 answers
  • Helppp and explain !!!!
    5·2 answers
  • 6t+4&lt;-2 solve the inequality
    11·1 answer
  • 12.6 + 4m = 9.6 + 8m
    5·2 answers
  • -3(3а - 8) = -3<br>solve for a and show your work ​
    7·2 answers
  • The width of a rectangle is 10cm less than the length. If the perimeter is 52, what
    5·1 answer
  • Pleasee help me this stuff hard
    6·1 answer
  • Explain how to correctly find the missing side
    14·2 answers
  • Noel works as a driver for a transportation company. On average, he drives 152 hours to make 19 successful deliveries. Assume th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!