Answer:
Cost of bicycle. £403.50
His present savings. £265.90
Amount required. £137.60
Step-by-step explanation:
pls brain list I hope I helped
The first one.
This statement is saying that x is less than zero and greater than zero at the same time. This is not possible. A number cannot be both negative and positive.
It's not the second one because this one includes equal to zero. It can be lass than or equal to zero and greater that or equal to zero because it can be ZERO.
It's not the third because this one is an OR statement. It can be less than or equal to zero OR greater than or equal to zero.
I hope you understand
The Laplace transform of the given initial-value problem
is mathematically given as

<h3>What is the Laplace transform of the given initial-value problem? y' 5y = e4t, y(0) = 2?</h3>
Generally, the equation for the problem is mathematically given as
![&\text { Sol:- } \quad y^{\prime}+s y=e^{4 t}, y(0)=2 \\\\&\text { Taking Laplace transform of (1) } \\\\&\quad L\left[y^{\prime}+5 y\right]=\left[\left[e^{4 t}\right]\right. \\\\&\Rightarrow \quad L\left[y^{\prime}\right]+5 L[y]=\frac{1}{s-4} \\\\&\Rightarrow \quad s y(s)-y(0)+5 y(s)=\frac{1}{s-4} \\\\&\Rightarrow \quad(s+5) y(s)=\frac{1}{s-4}+2 \\\\&\Rightarrow \quad y(s)=\frac{1}{s+5}\left[\frac{1}{s-4}+2\right]=\frac{2 s-7}{(s+5)(s-4)}\end{aligned}](https://tex.z-dn.net/?f=%26%5Ctext%20%7B%20Sol%3A-%20%7D%20%5Cquad%20y%5E%7B%5Cprime%7D%2Bs%20y%3De%5E%7B4%20t%7D%2C%20y%280%29%3D2%20%5C%5C%5C%5C%26%5Ctext%20%7B%20Taking%20Laplace%20transform%20of%20%281%29%20%7D%20%5C%5C%5C%5C%26%5Cquad%20L%5Cleft%5By%5E%7B%5Cprime%7D%2B5%20y%5Cright%5D%3D%5Cleft%5B%5Cleft%5Be%5E%7B4%20t%7D%5Cright%5D%5Cright.%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%20L%5Cleft%5By%5E%7B%5Cprime%7D%5Cright%5D%2B5%20L%5By%5D%3D%5Cfrac%7B1%7D%7Bs-4%7D%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%20s%20y%28s%29-y%280%29%2B5%20y%28s%29%3D%5Cfrac%7B1%7D%7Bs-4%7D%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%28s%2B5%29%20y%28s%29%3D%5Cfrac%7B1%7D%7Bs-4%7D%2B2%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%20y%28s%29%3D%5Cfrac%7B1%7D%7Bs%2B5%7D%5Cleft%5B%5Cfrac%7B1%7D%7Bs-4%7D%2B2%5Cright%5D%3D%5Cfrac%7B2%20s-7%7D%7B%28s%2B5%29%28s-4%29%7D%5Cend%7Baligned%7D)



In conclusion, Taking inverse Laplace tranoform
![L^{-1}[y(s)]=\frac{1}{9} L^{-1}\left[\frac{1}{s-4}\right]+\frac{17}{9} L^{-1}\left[\frac{1}{s+5}\right]$ \\\\](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5By%28s%29%5D%3D%5Cfrac%7B1%7D%7B9%7D%20L%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B1%7D%7Bs-4%7D%5Cright%5D%2B%5Cfrac%7B17%7D%7B9%7D%20L%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B1%7D%7Bs%2B5%7D%5Cright%5D%24%20%5C%5C%5C%5C)

Read more about Laplace tranoform
brainly.com/question/14487937
#SPJ4
Answer:
No, it is not okay to conduct the simulation this way.
Step-by-step explanation:
In statistics, simulation refers to a technique that is employed to model random events so that the results obtained from using the simulation is significantly similar to the results obtained from observing the real-world.
Researchers are therefore able to understand the real world when they observe the simulated outcomes.
From the description above, it can be seen that simulation is about studying random events. Therefore, a sample of the population that will be used in the simulation must be selected through a random sampling.
Random sampling refers to the sampling method that gives equal opportunity of being selected to each member of the population. This makes the sample selected through random sampling technique to be an unbiased representation of the total population.
As a result, making up 31 numbers between 1 and 365 by the student is not a random sampling, because his method may favor some numbers over others. It is therefore a defective method of carrying out simulation.
Therefore, the it is not okay to conduct the simulation this way.
I wish you the best.
Answer:
Number of Significant Figures: 4
The Significant Figures are 1 0 7 6