9514 1404 393
Answer:
see attached
Step-by-step explanation:
The graph of g(x) is a vertically scaled version of the graph of f(x). The scale factor is 1/2, so vertical height at a given value of x is 1/2 what it is for f(x). This will make the graph appear shorter and fatter than for f(x).
The graph of g(x) is attached.
Answer:
-28
Step-by-step explanation:
2(-2) is -4 and -24+-4 is -28 so yeah
Answer:
Get a calculator
Step-by-step explanation:
Most of the time for simple math like multiplying 2 digits, it is easiest if you just get a calculator. It saves a lot of time.
If you can't get a calculator then i recommend memorizing some common equations.
For example 10*15= 150
so that if you get 12*15=?, you can easily just add two extra 15's to your answer of 150.
15+15 is 30, and 30+150(from 10*15)=180.
Therefore 12*15=180.
:) Hope that helped!
Answer:
x = 2
Step-by-step explanation:
These equations are solved easily using a graphing calculator. The attachment shows the one solution is x=2.
__
<h3>Squaring</h3>
The usual way to solve these algebraically is to isolate radicals and square the equation until the radicals go away. Then solve the resulting polynomial. Here, that results in a quadratic with two solutions. One of those is extraneous, as is often the case when this solution method is used.

The solutions to this equation are the values of x that make the factors zero: x=2 and x=-1. When we check these in the original equation, we find that x=-1 does not work. It is an extraneous solution.
x = -1: √(-1+2) +1 = √(3(-1)+3) ⇒ 1+1 = 0 . . . . not true
x = 2: √(2+2) +1 = √(3(2) +3) ⇒ 2 +1 = 3 . . . . true . . . x = 2 is the solution
__
<h3>Substitution</h3>
Another way to solve this is using substitution for one of the radicals. We choose ...

Solutions to this equation are ...
u = 2, u = -1 . . . . . . the above restriction on u mean u=-1 is not a solution
The value of x is ...
x = u² -2 = 2² -2
x = 2 . . . . the solution to the equation
_____
<em>Additional comment</em>
Using substitution may be a little more work, as you have to solve for x in terms of the substituted variable. It still requires two squarings: one to find the value of x in terms of u, and another to eliminate the remaining radical. The advantage seems to be that the extraneous solution is made more obvious by the restriction on the value of u.
Let

denote the random variable for the weight of a swan. Then each swan in the sample of 36 selected by the farmer can be assigned a weight denoted by

, each independently and identically distributed with distribution

.
You want to find

Note that the left side is 36 times the average of the weights of the swans in the sample, i.e. the probability above is equivalent to

Recall that if

, then the sampling distribution

with

being the size of the sample.
Transforming to the standard normal distribution, you have

so that in this case,

and the probability is equivalent to
