Answer:
10
Step-by-step explanation:
Since m||n the sum of given angles is equal to 180 (they are supplementary)
6x + 10 + 10x + 10 = 180 add like terms
16x + 20 = 180 subtract 20 from from both sides
16x = 160 divide both sides by 16
x = 10
This seems to be referring to a particular construction of the perpendicular bisector of a segment which is not shown. Typically we set our compass needle on one endpoint of the segment and compass pencil on the other and draw the circle, and then swap endpoints and draw the other circle, then the line through the intersections of the circles is the perpendicular bisector.
There aren't any parallel lines involved in the above described construction, so I'll skip the first one.
2. Why do the circles have to be congruent ...
The perpendicular bisector is the set of points equidistant from the two endpoints of the segment. Constructing two circles of the same radius, centered on each endpoint, guarantees that the places they meet will be the same distance from both endpoints. If the radii were different the meets wouldn't be equidistant from the endpoints so wouldn't be on the perpendicular bisector.
3. ... circles of different sizes ...
[We just answered that. Let's do it again.]
Let's say we have a circle centered on each endpoint with different radii. Any point where the two circles meet will then be a different distance from one endpoint of the segment than from the other. Since the perpendicular bisector is the points that are the same distance from each endpoint, the intersection of circles with different radii isn't on it.
4. ... construct the perpendicular bisector ... a different way?
Maybe what I first described is different; there are no parallel lines.
Sadly, after giving all the necessary data, you forgot to ask the question.
Here are some general considerations that jump out when we play with
that data:
<em>For the first object:</em>
The object's weight is (mass) x (gravity) = 2 x 9.8 = 19.6 newtons
The force needed to lift it at a steady speed is 19.6 newtons.
The potential energy it gains every time it rises 1 meter is 19.6 joules.
If it's rising at 2 meters per second, then it's gaining 39.2 joules of
potential energy per second.
The machine that's lifting it is providing 39.2 watts of lifting power.
The object's kinetic energy is 1/2 (mass) (speed)² = 1/2(2)(4) = 4 joules.
<em>For the second object:</em>
The object's weight is (mass) x (gravity) = 4 x 9.8 = 39.2 newtons
The force needed to lift it at a steady speed is 39.2 newtons.
The potential energy it gains every time it rises 1 meter is 39.2 joules.
If it's rising at 3 meters per second, then it's gaining 117.6 joules of
potential energy per second.
The machine that's lifting it is providing 117.6 watts of lifting power.
The object's kinetic energy is 1/2 (mass) (speed)² = 1/2(4)(9) = 18 joules.
If you go back and find out what the question is, there's a good chance that
you might find the answer here, or something that can lead you to it.
Oh hi lol lol i’m yea lol lol i’m is it a joke like why he
There is a 1/3 chance. Because there are 3 coins