Answer:
Number of Adults Ticket=393
Number Of Students Tickets=792
Step-by-step explanation:
Let 'x' be the Adult's tickets
Let 'y' be the Student's tickets
x+y=1185 (total sold tickets)
5x+y=2757(total cost of tickets)
-(5x+y=2757)x+y=1185
(-5x-y)- x+y=1185-2757
=-4x+0 = (-1572)
=-4x=(-1572)
x= (-1572)÷-4
=393
=x+y=1185
=393+y=1185
=y=792
So Number of Adults Ticket=393
Number Of Students Tickets=792
Hope it Help
B
Let’s put this into a simple equation
8 apples = 2.96
We can substitute apples for x
8x=2.96
She divided by 8
X= 2.96/8
Remember x represents apples so only 1 x represents 1 apple
So that means the answer is B.
Hope that helped!
Yes yes yes yes yes yes yes
Answer:
d. does not exist
Step-by-step explanation:
The given limits are;
,
and ![\lim_{x \to 4} h(x) =-2](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%204%7D%20h%28x%29%20%3D-2)
We want to find
![\lim_{x \to 4} \frac{f}{g}(x)= \lim_{x \to 4} \frac{f(x)}{g(x)}](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%204%7D%20%5Cfrac%7Bf%7D%7Bg%7D%28x%29%3D%20%5Clim_%7Bx%20%5Cto%204%7D%20%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D)
By the properties of limits, we have;
![\lim_{x \to 4} \frac{f}{g}(x)= \frac{\lim_{x \to 4} f(x)}{\lim_{x \to 4} g(x)}](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%204%7D%20%5Cfrac%7Bf%7D%7Bg%7D%28x%29%3D%20%5Cfrac%7B%5Clim_%7Bx%20%5Cto%204%7D%20f%28x%29%7D%7B%5Clim_%7Bx%20%5Cto%204%7D%20g%28x%29%7D)
This gives us;
![\lim_{x \to 4} \frac{f}{g}(x)= \frac{5}{0}](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%204%7D%20%5Cfrac%7Bf%7D%7Bg%7D%28x%29%3D%20%5Cfrac%7B5%7D%7B0%7D)
Division by zero is not possible. Therefore the limit does not exist.
Answer:
it will be 634.24 because if you add 551.02 and 93.22 that will be 644.24 then you minus the 10 at the beginning.