This equation uses two properties of logarithms:


So you could take the ln from left and right hand side in the equation, and get:
(2-x)ln 3 = x ln 5
then
2 ln 3 - x ln 3 - x ln 5 = 0 =>
x(ln 3 + ln 5) = 2 ln 3
so x = 2 ln 3 / (ln3 + ln5)
Now using the 1st property you can say 2 ln 3 is ln 3² = ln9
and using the 2nd property you can say ln3 + ln5 = ln15
so x= ln9 / ln15
Answer:
En el curso anterior había 430 alumnos.
Step-by-step explanation:
El curso tiene 473 alumnos. Nos dicen que respecto al curso anterior se ha producido un aumento de inscripciones del 10 %. Entonces, siendo x la cantidad de alumnos que había en el curso anterior, se puede plantear la ecuación:
x + 0.1*x= 473
Resolviendo se obtiene:
1.1*x=473
x= 473 ÷1.1
x= 430
<u><em>En el curso anterior había 430 alumnos.</em></u>
the roots of the equation is option D.
Answer:
x=-1-5√17/2
Step-by-step explanation:
logo((x-2)(x+2))=2
logo(x²+3x-2x-6)=2
x²+3x-2x-6=10²
x²+x-6=100
x²+x-106=0
x=-1+5√17/2
Twenty-one thousand and sixty-three divided by three is 7021
First, take any number (for this example it will be 492) and add together each digit in the number (4+9+2 = 15). Then take that sum (15) and determine if it is divisible by 3. The original number is divisible by 3 (or 9) if and only if the sum of its digits is divisible by 3 (or 9).If a number is a multiplication of 3 consecutive numbers then that number is always divisible by 3. This is useful for when the number takes the form of (n * (n - 1)*(n + 1))Example: 492 (The original number). 4 + 9 + 2 = 15 (Add each individual digit together). 15 is divisible by 3 at which point we can stop. Alternatively we can continue using the same method if the number is still too large: 1 + 5 = 6 (Add each individual digit together). 6 ÷ 3 = 2 (Check to see if the number received is divisible by 3). 492 ÷ 3 = 164 (If the number obtained by using the rule is divisible by 3, then the whole number is divisible by 3)