1) given function
y = - 2 ^ ( -x + 2) + 1
2) domain: domain is the set of the x-values for which the function is defined.
The exponential function is defined for all the real numbers, so the domain of the given function is all the real numbers.
3) x-intercept => y = 0
=> y = - 2 ^ ( -x + 2) + 1 = 0 => 2^ ( -x + 2) = 1
=> - x + 2 = 0 => x = 2
The x-intercept is x = 0
4) y-intercept => x = 0
=> y = - 2 ^ ( -x + 2) + 1= - 2 ^ ( 0 + 2) 1 = - (2)^(2) + 1 =- 4 + 1 = - 3
=> The y-intercept is - 3
5) limit when x -> negative infinite
Lim f(x) when x -> ∞ = - ∞
6) limit when x -> infinite
Lim f(x) when x - > infinite = 1
=> asymptote = y = 1
7) range is the set of values of the fucntion: y
Given that the function is strictly decreasing from -∞ to ∞, the range is from - ∞ to less than 1
Range (-∞,1)
good zid for me s9ydy9dhchoxyoctd8dgx8yd8yc8yx
<span>Step 1: 0.4 = 4⁄10</span>
<span>Step 2: Simplify 4⁄10 = 2⁄5</span>
<span>
</span>
Answer:


Step-by-step explanation:
<h3>Question-1:</h3>
so when <u>flash down</u><u> </u>occurs the rocket will be in the ground in other words the elevation(height) from ground level will be 0 therefore,
to figure out the time of flash down we can set h(t) to 0 by doing so we obtain:

to solve the equation can consider the quadratic formula given by

so let our a,b and c be -4.9,229 and 346 Thus substitute:

remove parentheses:

simplify square:

simplify multiplication:

simplify Substraction:

by simplifying we acquire:

since time can't be negative

hence,
at <u>4</u><u>8</u><u>.</u><u>2</u><u> </u>seconds splashdown occurs
<h3>Question-2:</h3>
to figure out the maximum height we have to figure out the maximum Time first in that case the following formula can be considered

let a and b be -4.9 and 229 respectively thus substitute:

simplify which yields:

now plug in the maximum t to the function:

simplify:

hence,
about <u>3</u><u>0</u><u>2</u><u>1</u><u>.</u><u>6</u><u> </u>meters high above sea-level the rocket gets at its peak?