Answer:
Step-by-step explanation:
Given Data:
Set A : x = 23, Med = 22, S = 1.2
Set B : x = 24, Med = 29, S = 3.1
The Formula for Pearson's Index of Skewness (for Median in given data) is:
where,
<em>Pearson's Coefficient of Skewness</em>
<em /><em> Median of Distribution</em>
<em /><em> Mean of Distribution</em>
<em /><em> Standard Deviation of Distribution</em>
<em />
a) Finding Skewness:
For Set A:
For Set B:
b) Type of Distribution:
For Set A:
As the value of skewness is a positive value (i.e. 2.5). Hence, Set A is right (positively) skewed.
For Set B:
As the value of skewness is a negative value (i.e. -4.84). Hence, Set B is skewed left (or negatively skewed).
c) Which Set can be considered as symmetric?
As the Pearson's Coefficient of skewness for Set A (2.5) is closer to 0 as compared to that of Set B (-4.84). Set A is more closer to that of a symmetric distribution and therefore can be considered as one.