1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
3 years ago
13

Complete the statements about the key features of the graph of f(x) = x5 – 9x3. As x goes to negative infinity, f(x) goes to neg

ative infinity, and as x goes to positive infinity, f(x) goes to positive infinity.
Choose all of the zeroes of f(x).
–3 with multiplicity 1
3 with multiplicity 1
0 with multiplicity 1
0 with multiplicity 3
3 with multiplicity 0

Mathematics
2 answers:
Mars2501 [29]3 years ago
7 0
The function is f(x)= x^{5} -9x ^{3}

1. let's factorize the expression x^{5} -9x ^{3}:

f(x)= x^{5} -9x ^{3}= x^{3} ( x^{2} -9)=x^{3}(x-3)(x+3)

the zeros of f(x) are the values of x which make f(x) = 0.

from the factorized form of the function, we see that the roots are:

-3, multiplicity 1
3, multiplicity 1
0, multiplicity 3

(the multiplicity of the roots is the power of each factor of f(x) )


2.  
The end behavior of f(x), whose term of largest degree is x^{5}, is the same as the end behavior of  x^{3}, which has a well known graph. Check the picture attached. 

(similarly the end behavior of an even degree polynomial, could be compared to the end behavior of x^{2})

so, like the graph of x^{3}, the graph of f(x)= x^{5} -9x ^{3} :

"As x goes to negative infinity, f(x) goes to negative infinity, and as x goes to positive infinity, f(x) goes to positive infinity. "

Naily [24]3 years ago
5 0

Answer:

Negative, Positive///A,B,D////crosses

Step-by-step explanation:

you're welcome

PurpHearts
2 years ago
i need more people like you
You might be interested in
Section 1
icang [17]

Answer:

P(Red) = \frac{7}{25}

Step-by-step explanation:

Given

Red = 35

Blue = 40

Green = 50

Required

Determine the probability of red

P(Red) = \frac{n(Red)}{Total}

Substitute value for n(Red) and calculate Total

P(Red) = \frac{35}{35 + 40 + 50}

P(Red) = \frac{35}{125}

Divide numerator and denominator by 5

P(Red) = \frac{7}{25}

6 0
3 years ago
If the base ten blocks shown are to be divided into 13 equal groups. What should be done
In-s [12.5K]

Answer:

is this the right question please??

8 0
3 years ago
Ryker is given the graph of the function y= 1/2x^2 - 4 . He wants to find the zeros of the function but is unable to read them e
REY [17]
y = \frac{1}{2x^{2} - 4}
0 = \frac{1}{2x^{2} - 4}
0(2x^{2} - 4) = (2x - 4)(\frac{1}{2x^{2} - 4})
0(2x^{2}) - 0(4) = 1
0 - 0 = 1
0\neq1
8 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
laptop has a listed price of $879.95 before tax. If the sales tax rate is 8.5%, find the total cost of the laptop with sales tax
Black_prince [1.1K]

Answer:

It would be $954.75

Step-by-step explanation:

8 0
2 years ago
Other questions:
  • A barrel in Jim's yard contains 60 gallons of water. Water leaks out of the barrel at a rate of 1 gallon every 10 minutes. Creat
    11·2 answers
  • A math teacher gets a starting salary of $30,000. IF she gets a 1.5% increase in salary each year, what will her total income be
    12·1 answer
  • In a jumping contest marcus jumped 1.02 meters gustavo jumped 1.29 meters and lorena jumped 1.202 meters.who won the jumping con
    14·1 answer
  • The elevation of a fish is - 27 feet. The fish descends 32 feet, and then rises
    11·2 answers
  • Find the area of each figure. Use 3.14 for x.
    6·2 answers
  • Number 17 what does written form mean?
    10·1 answer
  • You usually buy a 5.4 ounce bottle of lotion. There is a new bottle that says it gives you 20% more free. Write an equation to b
    8·2 answers
  • Line a passes through (-2,1) and (0,3)
    9·1 answer
  • Find many ways of arranging 24 counters in equal rows as you can. Write a multiplication sentence for each way
    14·1 answer
  • (1/4)(5/6)^x=75/432. Solve the Equation
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!