1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mihalych1998 [28]
3 years ago
12

Please help me the 3^2+8x=10 x=?

Mathematics
2 answers:
Kipish [7]3 years ago
7 0
You have to multiply 3x3 since it says 3^2 then subtract 9 from 10 you get 1. Then you have to diving 8x and 1 and you get 1/8
Tresset [83]3 years ago
5 0
1

Simlpify 3^2 to 9

9 + 8x = 10

2

Subtract 9 from both sides.

8x = 10 - 9

3

Simplify 10 - 9 to 1 

8x = 1

4

Divide both sides by 8

x = 1/8

I hope this helps, and have a great day. :)
You might be interested in
Given the figure, find the values of x and z.
matrenka [14]

Answer:

z = 62 \\ 6x + 52 = 180 - 62 \\ 6x = 66 \\ x = 11

7 0
3 years ago
Read 2 more answers
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
X decreased by 50 % and then increased by 50%<br> which number is heater and by how much
dimaraw [331]

Answer:

baddie uwu

Step-by-step explanation:

harder daddy harder

6 0
2 years ago
Find the value of y round your answer to the nearest tenth cos y y=8/13
Iteru [2.4K]

8/13 = 0.6153

y = cos-1(0.6153)

y = 52.0

I'm not totally sure if this is what you mean or if this is.

y = cos(8/13) = 0.9999 which to the nearest tenth is 1.0

7 0
4 years ago
Read 2 more answers
The volume of a gas with a pressure of 1.2 atm increases from 1.0 L to 4.0 L. What is the final pressure of the gas, assuming co
salantis [7]

Answer:

(b) 0.30 atm

Step-by-step explanation:

Given data

Initial pressure= 1.2atm

Initial volume= 1.0L

Final volume= 4.0L

Final pressure= ???

Let us apply the gas formula to find the Final pressure

P1V1= P2V2

Substitute

1.2*1= x*4

Divide both sides by 4

1.2/4= x

x= 0.3atm

Hence the final pressure is 0.3 atm

5 0
3 years ago
Other questions:
  • The amount of time that a certain type of battery functions is a random variable with mean 5
    9·1 answer
  • 1.3(-7.5m - 3.3) + 0.8m = 2.07 - 3.4m
    11·1 answer
  • Ashley has $62, part of which she wants to use to pay back money she owes people. She owes $13 to her brother and she owes $39 t
    13·2 answers
  • 1. What is the slope-intercept for the cost of a sub at Fred’s Sub shop?
    10·2 answers
  • why does the multiplication property of equality not allow us to divide both sides of an equation by zero​
    10·1 answer
  • What is the value of x? Enter your answer in the box.
    14·1 answer
  • Lousina has 4 yards of fabric. she uses 2/5 yard of fabric to make a doll dress. How many doll dresses could Lousina make with t
    13·1 answer
  • Find the measure of angle b
    8·2 answers
  • According to the U.S. Department of Agriculture, the average American consumed 54.3 pounds (ap- proximately seven gallons) of sa
    15·1 answer
  • Which of the following is the graph of x^2&lt;16?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!