Answer:
the areas of these triangles are 83.2cm² and 46.8cm²
Step-by-step explanation:
1. If the triangles are similar and the ratio of the perimeter ois 4:3, then the areas are in the following ratio:
4²:3²
16:9
2. The sum of their areas is 65 cm², then, you can calculate the area of the larger triangle as following:
130(16/16+9)
130(0.64)
=83.2cm²
3. The area of the smaller triangle is:
130(9/16+9)
130(0.36)
46.8cm²
<u>Hope this help</u>s
Answer:
16) 62.8 m²
17) 19.4 m²
18) 103.5 m²
Step-by-step explanation:
The formula to find area of a circle is:
. To find radius, find the half of the diameter.
To solve number 16, first find the area of the unshaded circle using the formula:
. This is also 3.14*16. Multiply to get 50.24 m². Now find the area of the larger circle using the formula:
. This is also 3.14*36. Multiply to get 113.04 m². Now subtract 113.04 - 50.24 to get the shaded area or 62.8 m².
To solve number 17, first find the area of the square using the formula: side x side. In this case multiply: 5.25 x 5.25 to get 27.5625. Round to the nearest tenth to get 27.6 m². Now find the area of the circle using the formula:
. This is also 3.14*2.625. Multiply to get 8.2425. Round to the nearest tenth to get 8.2. Subtract 27.6 - 8.2 to get 19.4 m².
To solve number 18, find the area of one unshaded circle using the formula:
. This is also 3.14*3.0625. Multiply to get 9.61625. Round to the nearest tenth to get 9.6 m². Add 9.6 + 9.6 to find the area of both unshaded circles. You get 19.2 m². Now find the area of the shaded circle using the formula:
. This is also 3.14*39.0625. Multiply to get 122.65625. Round to the nearest tenth: 122.7. Subtract 122.7 - 19.2 to get 103.5 m².
Hope it helps and is correct!
Answer:
x - 3y = 8.
Step-by-step explanation:
Use the point-slope form of the equation of a line:
y - y1 = m(x - x1) where m = the slope and (x1, y1) is a point on the line.
So substituting the given values:
y - (-2) = 1/3(x - 2)
y + 2 = 1/3x - 2/3 Multiply through by 3:
3y + 6 = x - 2
x - 3y = 6 + 2
x - 3y = 8 <---- Standard Form.
Answer:
it's option B the second one
We are given that there are a total of 78 students. If we set the following variables:

Then, the sum of all of these must be 78, that is:

Since there are 15 in chemistry and physics and 47 in chemistry, we may replace that into the equation and we get:

Simplifying:

Now we solve for P by subtracting 62 on both sides:

Therefore, there are 16 students in physics