Answer:
( x +2 +p) ( x+2+p)
Step-by-step explanation:
let x+2 be x
x^2 + p^2 + 2px
x^2 + 2 × p × x + p^2
(x+p)^2
(x+p)(x+p)
replacing the value of x
( x +2 +p) ( x+2+p)
You want the largest SQUARE floor then both of the sides have to be the same. Since one gallon can cover up 144 square feet, to work out the dimensions you have to find the square root of 144 which is 12. So the largest square floor it can cover has dimensions 12x12 feet.
Hope this helped :)
Answer:
2 2/5 and 2 2/100
Step-by-step explanation:
The answers range in many ways! Whatever floats your boat to pick!
Hope this helped! :)
Answer:
See Explanation.
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Distributive Property
- Equality Properties
<u>Algebra I</u>
- Combining Like Terms
- Factoring
<u>Calculus</u>
- Derivative 1:
![\frac{d}{dx} [e^u]=u'e^u](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Be%5Eu%5D%3Du%27e%5Eu)
- Integration Constant C
- Integral 1:

- Integral 2:

- Integral 3:

- Integral Rule 1:

- Integration by Parts:

- [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig
Step-by-step Explanation:
<u>Step 1: Define Integral</u>

<u>Step 2: Identify Variables Pt. 1</u>
<em>Using LIPET, we determine the variables for IBP.</em>
<em>Use Int Rules 2 + 3.</em>

<u>Step 3: Integrate Pt. 1</u>
- Integrate [IBP]:

- Integrate [Int Rule 1]:

<u>Step 4: Identify Variables Pt. 2</u>
<em>Using LIPET, we determine the variables for the 2nd IBP.</em>
<em>Use Int Rules 2 + 3.</em>

<u>Step 5: Integrate Pt. 2</u>
- Integrate [IBP]:

- Integrate [Int Rule 1]:

<u>Step 6: Integrate Pt. 3</u>
- Integrate [Alg - Back substitute]:
![\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]](https://tex.z-dn.net/?f=%5Cint%20%7Be%5E%7Bau%7Dsin%28bu%29%7D%20%5C%2C%20du%20%3D%20%5Cfrac%7B-e%5E%7Bau%7Dcos%28bu%29%7D%7Bb%7D%20%2B%20%5Cfrac%7Ba%7D%7Bb%7D%20%5B%5Cfrac%7Be%5E%7Bau%7Dsin%28bu%29%7D%7Bb%7D%20-%20%5Cfrac%7Ba%7D%7Bb%7D%20%5Cint%20%28%7Be%5E%7Bau%7D%20sin%28bu%29%7D%29%20%5C%2C%20du%5D)
- [Integral - Alg] Distribute Brackets:

- [Integral - Alg] Isolate Original Terms:

- [Integral - Alg] Rewrite:

- [Integral - Alg] Isolate Original:

- [Integral - Alg] Rewrite Fraction:

- [Integral - Alg] Combine Like Terms:

- [Integral - Alg] Divide:

- [Integral - Alg] Multiply:
![\int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]](https://tex.z-dn.net/?f=%5Cint%20%7Be%5E%7Bau%7Dsin%28bu%29%7D%20%5C%2C%20du%20%3D%20%5Cfrac%7B1%7D%7Ba%5E2%2Bb%5E2%7D%20%5Bae%5E%7Bau%7Dsin%28bu%29%20-%20be%5E%7Bau%7Dcos%28bu%29%5D)
- [Integral - Alg] Factor:
![\int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]](https://tex.z-dn.net/?f=%5Cint%20%7Be%5E%7Bau%7Dsin%28bu%29%7D%20%5C%2C%20du%20%3D%20%5Cfrac%7Be%5E%7Bau%7D%7D%7Ba%5E2%2Bb%5E2%7D%20%5Basin%28bu%29%20-%20bcos%28bu%29%5D)
- [Integral] Integration Constant:
![\int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C](https://tex.z-dn.net/?f=%5Cint%20%7Be%5E%7Bau%7Dsin%28bu%29%7D%20%5C%2C%20du%20%3D%20%5Cfrac%7Be%5E%7Bau%7D%7D%7Ba%5E2%2Bb%5E2%7D%20%5Basin%28bu%29%20-%20bcos%28bu%29%5D%20%2B%20C)
And we have proved the integration formula!