Answer:
x=6
Step-by-step explanation:
2x+(4x+3)=39
2x+4x+3=39
6x+3=39
6x=39-3
6x=36
x=36÷6
x=6
Answer:
The solution to above problem is 1- $45n 2- $(250+28n) 3- $(500+20n)
Step-by-step explanation:
Answer:
Solution: x = -2; y = 3 or (-2, 3)
Step-by-step explanation:
<u>Equation 1:</u> y = -5x - 7
<u>Equation 2:</u> -4x - 3y = -1
Substitute the value of y in Equation 1 into the Equation 2:
-4x - 3(-5x - 7) = -1
-4x +15x + 21 = -1
Combine like terms:
11x + 21 = - 1
Subtract 21 from both sides:
11x + 21 - 21 = - 1 - 21
11x = -22
Divide both sides by 11 to solve for x:
11x/11 = -22/11
x = -2
Now that we have the value for x, substitute x = 2 into Equation 2 to solve for y:
-4x - 3y = -1
-4(-2) - 3y = -1
8 - 3y = -1
Subtract 8 from both sides:
8 - 8 - 3y = -1 - 8
-3y = -9
Divide both sides by -3 to solve for y:
-3y/-3 = -9/-3
y = 3
Therefore, the solution to the given systems of linear equations is:
x = -2; y = 3 or (-2, 3)
Please mark my answers as the Brainliest if you find this helpful :)
The area of the region which is inside the polar curve r = 5 sinθ but outside r = 4 will be 3.75 square units.
<h3>What is an area bounded by the curve?</h3>
When the two curves intersect then they bound the region is known as the area bounded by the curve.
The area of the region which is inside the polar curve r = 5 sinθ but outside r = 4 will be
Then the intersection point will be given as

Then by the integration, we have
![\rightarrow \dfrac{1}{2} \times \int _{0.927}^{2.214}[ (5 \sin \theta)^2 - 4^2] d\theta \\\\\\\rightarrow \dfrac{1}{2} \times \int _{0.927}^{2.214} [25\sin ^2 \theta - 16] d\theta \\\\\\\rightarrow \dfrac{1}{2} \times \int _{0.927}^{2.214} [ \dfrac{25}{2}(1 - \cos 2\theta ) - 16] d\theta \\](https://tex.z-dn.net/?f=%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cint%20_%7B0.927%7D%5E%7B2.214%7D%5B%20%285%20%5Csin%20%5Ctheta%29%5E2%20-%204%5E2%5D%20d%5Ctheta%20%5C%5C%5C%5C%5C%5C%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cint%20_%7B0.927%7D%5E%7B2.214%7D%20%5B25%5Csin%20%5E2%20%5Ctheta%20-%2016%5D%20d%5Ctheta%20%5C%5C%5C%5C%5C%5C%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cint%20_%7B0.927%7D%5E%7B2.214%7D%20%5B%20%5Cdfrac%7B25%7D%7B2%7D%281%20-%20%5Ccos%202%5Ctheta%20%29%20-%2016%5D%20d%5Ctheta%20%5C%5C)
![\rightarrow \dfrac{1}{2} [\dfrac{25 \theta }{5} - \dfrac{25 \cos 2\theta }{2} - 16\theta]_{0.927}^{2.214} \\\\\\\rightarrow \dfrac{1}{2} [\dfrac{25(2.214 - 0.927) }{5} - \dfrac{25 (\cos 2\times 2.214 - \cos 2\times 0.927) }{2} - 16(2.214 - 0.927]\\](https://tex.z-dn.net/?f=%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5B%5Cdfrac%7B25%20%5Ctheta%20%7D%7B5%7D%20-%20%5Cdfrac%7B25%20%5Ccos%202%5Ctheta%20%7D%7B2%7D%20-%2016%5Ctheta%5D_%7B0.927%7D%5E%7B2.214%7D%20%5C%5C%5C%5C%5C%5C%5Crightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5B%5Cdfrac%7B25%282.214%20-%200.927%29%20%7D%7B5%7D%20-%20%5Cdfrac%7B25%20%28%5Ccos%202%5Ctimes%202.214%20-%20%5Ccos%202%5Ctimes%200.927%29%20%7D%7B2%7D%20-%2016%282.214%20-%200.927%5D%5C%5C)
On solving, we have

Thus, the area of the region is 3.75 square units.
More about the area bounded by the curve link is given below.
brainly.com/question/24563834
#SPJ4