Answer:
d. water has a high heat capacity
Explanation:
water can absorb a large amount of energy without a large rise in temperature. This is called heat capacity. As the sun shines on bodies of water, they absorbs great amount of its energy without a large fluctuation in temperature.
Answer:
C. H+ ions do not accumulate inside the thylakoid, so ATP synthase makes too little ATP.
Explanation:
Plant withering refers to the virtual death of plant cells due to lack of food. During the light-dependent reactions of photosynthesis, ATP needed for the synthesis of sugar (food) is created in the thylakoid membrane of the CHLOROPLAST of plant cells.
In the light-dependent reaction, hydrogen ions (H+) builds up/accumulate in the thylakoid lumen to create an electrochemical or proton gradient i.e. a difference in the concentration of H+ ions across the membrane. The hydrogen ions passes through a protein complex called ATP synthase, which forms ATP from ADP (by adding phosphate group), from the energy generated by the electrochemical gradient formed as a result of hydrogen in (H+) build up.
Hence, a plant that possess leaky membrane due to the cold temperature will likely wither because H+ ions are not able to accumulate inside the thylakoid causing a proton gradient, so ATP synthase makes too little ATP.
Out of the choices given, the excerpt that best reflects Byron's appreciation of beauty was "the nameless grace/Which waves in every raven tress." The excerpt comes from the poem "She Walks in Beauty."
Transcription occurs in the nucleus of the cell. RNA polymerase breaks the hydrogen bonds and unzips a portion of DNA. RNA nucleotides match the DNA strand forming mRNA. In mRNA thymine is replaced by uracil. Once mRNA is formed it leaves the nucleus through a nuclear pore into the cytoplasm. The purpose of mRNA is to remove the protein code out of the nucleus without pulling the DNA out. mRNA then needs to find ribosomes in the cytoplasm which can be found on the rough ER. mRNA has read three bases at the same time and these are called codons. Ribosomes read the mRNA code and add the correct amino acid using tRNA. tRNA has an anti-codon on one end which will match a specific codon, and a specific amino acid on the other end. This will make translation happen.
Translation- mRNA attaches to a ribosome and a start codon must be read. tRNA brings the first amino acid which matches the codon on mRNA. The next tRNA molecule moves in and matches with the codon on mRNA while amino acids form a peptide bond. First tRNA detaches itself and mRNA shifts for the next tRNA molecule to come in. Protein grows until a stop codon is reached and then it's ready to finish folding to become functional.