Answer:
4= Sx+10/2 simplifies to -s*x-1=0
Step-by-step explanation:
Answer:
The points corresponding to P=(3,4) and Q=(6,7), so the answer is D.
Step-by-step explanation:
Ok, in mathematics, given two sets X and Y, the collection of all the ordered pairs (X, Y), formed with a first element in X and a second element in Y, is called the Cartesian product of X and Y. The Cartesian product of sets allows define relationships and functions. In this case, it is a function that contains two points, denoted P and Q. Given, the ordered pair of each, first read the one corresponding to the X axis and then to the Y axis.
For P: you read X and you see that it is on 3 (between 2 and 4), and then the Y axis is on 4 (between 3 and 5).
For Q: you read X and you see that it is on 6 (between 5 and 7) and then the Y axis is on 7 (between 6 and 8)
The first quartile of the data set is 28 because it is the median of the lower set.
Rectangular with whole numbers
perimiter=legnth+legnth+width+width=2l+2w
therefor
p=2l+2w=2(l+w)
p/2=l+w
perimiter=20
20=2l+2w
divide by 2 to make simpler
10=l+w
find all combos
l>w so
l=9 and w=1
l=8 and w=2
l=7 and w=3
l=6 and w=4
combos
Answer:
The decision rule is
Fail to reject the null hypothesis
The conclusion is
There is no sufficient evidence to show that the average room price is significantly different from $108.50
Step-by-step explanation:
From the question we are told that
The sample size is n = 64
The average price is 
The population standard deviation is 
The level of significance is 
The population mean is 
The null hypothesis is 
The alternative hypothesis is 
Generally the test statistics is mathematically represented as

=>
=> 
From the z table the area under the normal curve to the left corresponding to 1.75 is

Generally p-value is mathematically represented as

=> 
=> 
From the values obtained we see that
hence
The decision rule is
Fail to reject the null hypothesis
The conclusion is
There is no sufficient evidence to show that the average room price is significantly different from $108.50