Answer:
(-3,-3)
Step-by-step explanation:
If we reflect P (0,0) across x=-3 and then across y=-3, then the new point of P would be (0-3,0-3)=(-3,-3)
Step-by-step explanation:
1st expression = 3a - 6 = 3 ( a - 2 )
2nd expression = a² - 4 = a² - 2² = ( a + 2) (a - 2)
The HCF is (a -2).
Hope it helps :)❤
Answer:
b = 40 and -40
Step-by-step explanation:
General form of Perfect square trinomial is a 2 + 2 a b + b 2
Therefore from 16 x 2 − b x + 25 a 2 = √ 16 x 2 , b 2 = 25 , then a = ± 4 x , b = ± 5 take consideration a=4x and b=-5 (different sign), then − b x = 2 ( 4 x ) ( − 5 ) − b x = − 40 x b = 40
The perfect square is ( 4 x − 5 ) 2 = 16 x 2 − 40 x + 25 .
if we consider a=4x and b=5 (same sign), then − b x = 2 ( 4 x ) ( 5 ) − b x = 40 x b = − 40
The perfect square is ( 4 x + 5 ) 2 = 16 x 2 + 40 x + 25 .
The first solution ( 4 x − 5 ) 2 is the best solution after comparing the expression given. I hope this helps, xx .
Answer:
follow on insta trippy1669
Step-by-step explanation:
Answer:
Step-by-step explanation:
(cos A+ cos B)-cos C
![=2cos \frac{A+B}{2}cos \frac{A-B}{2}-cos C~~~...(1)\\A+B+C=180\\A+B=180-C\\\frac{A+B}{2}=90-\frac{C}{2}\\cos \frac{A+B}{2}=cos(90-\frac{C}{2})=sin \frac{C}{2}\\cos C=1-2sin^2\frac{C}{2}\\(1)=2 sin \frac{C}{2} cos \frac{A-B}{2}-1+2sin^2\frac{C}2}\\=2sin\frac{C}{2}[cos \frac{A-B}{2}+sin \frac{C}{2}]-1~~~...(2)\\\\now~again~A+B+C=180\\C=180-(A+B)\\sin\frac{C}{2}=sin(90-\frac{A+B}{2})=cos \frac{A+B}{2}\\(2)=2sin\frac {C}{2}[cos \frac{A-B}{2}+cos \frac{A+B}{2}]-1\\](https://tex.z-dn.net/?f=%3D2cos%20%5Cfrac%7BA%2BB%7D%7B2%7Dcos%20%5Cfrac%7BA-B%7D%7B2%7D-cos%20C~~~...%281%29%5C%5CA%2BB%2BC%3D180%5C%5CA%2BB%3D180-C%5C%5C%5Cfrac%7BA%2BB%7D%7B2%7D%3D90-%5Cfrac%7BC%7D%7B2%7D%5C%5Ccos%20%5Cfrac%7BA%2BB%7D%7B2%7D%3Dcos%2890-%5Cfrac%7BC%7D%7B2%7D%29%3Dsin%20%5Cfrac%7BC%7D%7B2%7D%5C%5Ccos%20C%3D1-2sin%5E2%5Cfrac%7BC%7D%7B2%7D%5C%5C%281%29%3D2%20sin%20%5Cfrac%7BC%7D%7B2%7D%20cos%20%5Cfrac%7BA-B%7D%7B2%7D-1%2B2sin%5E2%5Cfrac%7BC%7D2%7D%5C%5C%3D2sin%5Cfrac%7BC%7D%7B2%7D%5Bcos%20%5Cfrac%7BA-B%7D%7B2%7D%2Bsin%20%5Cfrac%7BC%7D%7B2%7D%5D-1~~~...%282%29%5C%5C%5C%5Cnow~again~A%2BB%2BC%3D180%5C%5CC%3D180-%28A%2BB%29%5C%5Csin%5Cfrac%7BC%7D%7B2%7D%3Dsin%2890-%5Cfrac%7BA%2BB%7D%7B2%7D%29%3Dcos%20%5Cfrac%7BA%2BB%7D%7B2%7D%5C%5C%282%29%3D2sin%5Cfrac%20%7BC%7D%7B2%7D%5Bcos%20%5Cfrac%7BA-B%7D%7B2%7D%2Bcos%20%5Cfrac%7BA%2BB%7D%7B2%7D%5D-1%5C%5C)
