1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliina [53]
4 years ago
5

Solve for x:a(a²+b²)x²+b²x-a​

Mathematics
1 answer:
m_a_m_a [10]4 years ago
5 0

Answer:

x = a/(a² + b²) or x = -1/a  

Step-by-step explanation:

a(a²+ b²)x² + b²x - a =0

Use the quadratic equation formula:

x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} =\dfrac{-b\pm\sqrt{D}}{2a}

1. Evaluate the discriminant D

D = b² - 4ac = b⁴ - 4a(a² + b²)(-a) = b⁴ + 4a⁴ + 4a²b²  = (b² + 2a²)²

2. Solve for x

\begin{array}{rcl}x & = & \dfrac{-b\pm\sqrt{D}}{2a}\\\\ & = & \dfrac{-b^{2}\pm\sqrt{(b^{2}+2a^{2})^{2}}}{2a(a^{2} + b^{2})}\\\\ & = & \dfrac{-b^{2}\pm(b^{2}+ 2a^{2})}{2a(a^{2} + b^{2})}\\\\x = \dfrac{-b^{2}+(b^{2} + 2a^{2})}{2a(a^{2} + b^{2})}&\qquad& x =\dfrac{-b^{2}-(b^{2} + 2a^{2})}{2a(a^{2} + b^{2})}\\\\x =\dfrac{-b^{2}+(b^{2} + 2a^{2})}{2a(a^{2} + b^{2})}&\qquad& x =\dfrac{-b^{2}-(b^{2} +2a^{2})}{2a(a^{2} + b^{2})}\\\\\end{array}

\begin{array}{rcl}x = \large \boxed{\mathbf{\dfrac{a}{a^{2} + b^{2}}}}&\qquad& x =\dfrac{-b^{2}-(b^{2} +2a^{2})}{2a(a^{2} + b^{2})}\\\\&\qquad& x =\dfrac{-2b^{2}- 2a^{2}}{2a(a^{2} + b^{2})}\\\\&\qquad& x =\dfrac{-2(a^{2}+ b^{2})}{2a(a^{2} + b^{2})}\\\\&\qquad& x =\large \boxed{\mathbf{-\dfrac{1}{a}}}\\\\\end{array}

You might be interested in
What is the reflection image of P (0, 0) after two reflections, first across x = −3 and then across y = −3? (−6, −6) (−6, −3) (−
Nadya [2.5K]

Answer:

(-3,-3)

Step-by-step explanation:

If we reflect P (0,0) across x=-3 and then across y=-3, then the new point of P would be (0-3,0-3)=(-3,-3)

4 0
4 years ago
Plss help me find this hcf<br><br>3a-6,a²-4​
aleksklad [387]

Step-by-step explanation:

1st expression = 3a - 6 = 3 ( a - 2 )

2nd expression = a² - 4 = a² - 2² = ( a + 2) (a - 2)

The HCF is (a -2).

Hope it helps :)❤

8 0
3 years ago
Read 2 more answers
Which value of b would make 16x²-bx + 25 a perfect square trinomial?
blondinia [14]

Answer:

b = 40 and -40

Step-by-step explanation:

General form of Perfect square trinomial is a 2 + 2 a b + b 2

Therefore from 16 x 2 − b x + 25 a 2 = √ 16 x 2 , b 2 = 25 , then a = ± 4 x , b = ± 5 take consideration a=4x and b=-5 (different sign), then − b x = 2 ( 4 x ) ( − 5 ) − b x = − 40 x b = 40

The perfect square is ( 4 x − 5 ) 2 = 16 x 2 − 40 x + 25 .

if we consider a=4x and b=5 (same sign), then − b x = 2 ( 4 x ) ( 5 ) − b x = 40 x b = − 40

The perfect square is ( 4 x + 5 ) 2 = 16 x 2 + 40 x + 25 .

The first solution ( 4 x − 5 ) 2 is the best solution after comparing the expression given.  I hope this helps, xx .

8 0
3 years ago
H(t)=-20+11t solve for h(11)​
marusya05 [52]

Answer:

follow on insta trippy1669

Step-by-step explanation:

8 0
3 years ago
CosA + cosB - cosC = -1 + 4cosA/2 cosB/2 sinC/2
Lubov Fominskaja [6]

Answer:

Step-by-step explanation:

(cos A+ cos B)-cos C

=2cos \frac{A+B}{2}cos \frac{A-B}{2}-cos C~~~...(1)\\A+B+C=180\\A+B=180-C\\\frac{A+B}{2}=90-\frac{C}{2}\\cos \frac{A+B}{2}=cos(90-\frac{C}{2})=sin \frac{C}{2}\\cos C=1-2sin^2\frac{C}{2}\\(1)=2 sin \frac{C}{2} cos \frac{A-B}{2}-1+2sin^2\frac{C}2}\\=2sin\frac{C}{2}[cos \frac{A-B}{2}+sin \frac{C}{2}]-1~~~...(2)\\\\now~again~A+B+C=180\\C=180-(A+B)\\sin\frac{C}{2}=sin(90-\frac{A+B}{2})=cos \frac{A+B}{2}\\(2)=2sin\frac {C}{2}[cos \frac{A-B}{2}+cos \frac{A+B}{2}]-1\\

=-1+2sin\frac{C}{2}*2cos \frac{\frac{A-B}{2} +\frac{A+B}{2} }{2} cos \frac{\frac{A-B}{2} -\frac{A+B}{2} }{2} \\=-1+4sin\frac{C}{2} cos \frac{A}{2} cos\frac{-B}{2} \\=-1+4 cos \frac{A}{2} cos \frac{B}{2} sin \frac{C}{2}\\(cos(-B)=cos B)

8 0
3 years ago
Other questions:
  • Use the values on the number line to find the sampling error.
    8·1 answer
  • Which of these can be considered "online banking?"
    9·2 answers
  • What is the solution for e=ir for r
    5·2 answers
  • Garrrrryy <br><br> no need to show work <br> two questions <br> thankks
    10·1 answer
  • The population of Oregon is about 3.8 million. The population of the whole U.S. is about 318.9 million. Approximately what perce
    13·1 answer
  • -4 &lt; 11 - 3x<br> Solve for x.<br> Answer as an inequality.
    6·1 answer
  • The difference of x and a number is 6. What is the other number?
    9·1 answer
  • I’LL GIVE YOU BRAINLIST * have to get it right * Determine the slope of the line represented in the table.
    11·2 answers
  • What is the negation of 5
    12·2 answers
  • How many gallons are in a pool that holds 758,000 Liters
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!