<span>Ni = 5
The Rydberg formula for hydrogen is
1/w = R(1/a^2 - 1/b^2)
where
w = wavelength in vacuum
R = Rydberg constant 1.0973731568508x10^7 1/m
a,b = integers greater than or equal to 1 and a < b
Now we need to select the value for a.
a = 1 will converge towards 91.13 nm
a = 2 converges towards 364.51 nm
a = 3 converges towards 820.14 nm
...
Because of this, we will assume a = 1 for this problem since it converges closest to the wavelength given.
Substitute known values
1/w = R(1/a^2 - 1/b^2)
1/9.504x10^-8 = 1.0973731568508x10^7(1/1^2 - 1/b^2)
10521885.52 = 1.0973731568508x10^7(1/1 - 1/b^2)
0.958824759 = 1 - 1/b^2
-0.041175241 = -1/b^2
0.041175241 = 1/b^2
24.28643927 = b^2
4.928127359 = b
So Ni = 5.</span>
Forces on an object are combined yo determine the net force on that object.
if two forces are acting on a object in the same object the net force is the sum of both of them
if two forces are acting on an object in different directions they are subtracted
in the photo above the net force is 3
Plasma Membrane is the answer
Answer:
Oxygen molecules in the tissues of the lung diffuse into the blood because the concentration of oxygen in the lung's tissues is more than the concentration of oxygen in the blood.
Explanation:
Diffusion is the movement of molecules from the region of higher concentration of the molecule to the region of lower concentration of the same molecule. Molecules in diffusion move <em>downward the concentration</em> <em>gradient</em> created by difference in concentration between two regions until an <em>equilibrium (equal concentration in the two regions)</em> is established.
Oxygen molecules diffuse into the tissues of the lung when an organism breathes-in during the process of breathing. The molecules in the now oxygen-rich tissues eventually start diffusing into the blood in the lung because the blood passing through the lung is always de-oxygenated or has lower oxygen concentration compared to the tissues of the lung.
Oxygenated blood moves into the heart, pumps round the body by the heart, gets depleted of oxygen and eventually find its way back to the lung where the process is repeated.
Diffusion of oxygen from the tissues of the lung into the blood will keep happening as long as oxygen keeps getting dissolved into the lung's tissues and an equilibrium is yet to be established between the tissues and the blood.
In a survey, it says that human's DNA are 99% the same.
Hope this helps! :)