Answer:
v = 1/(1+i)
PV(T) = x(v + v^2 + ... + v^n) = x(1 - v^n)/i = 493
PV(G) = 3x[v + v^2 + ... + v^(2n)] = 3x[1 - v^(2n)]/i = 2748
PV(G)/PV(T) = 2748/493
{3x[1 - v^(2n)]/i}/{x(1 - v^n)/i} = 2748/493
3[1-v^(2n)]/(1-v^n) = 2748/493
Since v^(2n) = (v^n)^2 then 1 - v^(2n) = (1 - v^n)(1 + v^n)
3(1 + v^n) = 2748/493
1 + v^n = 2748/1479
v^n = 1269/1479 ~ 0.858
Step-by-step explanation:
1)
x+10<-7
bring 10 to the other side
x<-10-7
x<-17
2)
-3x-4>5
bring -4 to the other side
-3x>9
divide -3 at the other side, since it is negative it changes to less than
x<-3
Answer:
0.1469
Step-by-step explanation:
Given from the question;
Mean=8.4 hrs=μ
Standard deviation=1.8 hrs=δ
Sample size, n=40
Let x=8.7
z=(x-μ)÷(δ÷√n)
Find z(8.7)
z=(8.7-8.4)÷(1.8÷√40)
z={0.3×√40}÷1.8=1.05409
z=1.0541
Read from the standard normal probabilities table
P(z>1.0541)
=0.1459
Y = 4/5x - 1 rise over run and when x = 0 y = -1
Simply mean to take it apart. The most basic way to decompose a fraction is to break into unit fractions